Analyse 1 MATH-101(c/pi) S. Friedli (EPFL)
Série 11: Dérivée, regle de BH Automne 2025

Ex-11-01: Montrer que si une fonction f : [a,b] — R est continue et dérivable
sur ]a, b[, non-constante, et satisfait f(a) = f(b), alors il existe au moins un
point ¢y €]a, b[ ou sa dérivée est strictement positive, et un point c¢_ €la, b[ ou
sa dérivée est strictement négative.

Ex-11-02: Chercher les max/min globaux des fonctions ci-dessous, sur I'inter-
valle donné. En déduire I’ensemble image de f.

1) f(z) =2%", I =[-3,1]
2) f(z) =|sin(x) + 3], I = [-5.7]

Ex-11-03: Montrer analytiquement 1'égalité ci-dessous :
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Ex-11-04: Calculer les limites suivantes :
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Ex-11-05: Montrer qu'il existe, sur [0, 1], une abscisse x = ¢ pour laquelle les
graphes de f(z) = sin(3xz) et g(x) = 22® — 2® ont des tangentes paralléles.

Ex-11-06: Montrer I'inégalité suivante : pour tout z € R,
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Ex-11-07: Montrer que pour tout £ € N*,
- x?2 28 "
e 21+$+§+§+‘“+H, Ve >0

Ex-11-08: Etudier la limite ci-dessous, en fonction des parametres a et b :
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Ex-11-09: Soient f,g: R — R des fonctions dérivables sur R avec ¢'(x) # 0
pour tout x € R. Vrai ou faux?

- o B o f@) e ()
1) Si :Ch_g.lo flz) = :611_3.10 g(x) = oo, alors lim 7=+ = lim .

T—$00 z—o0 9'(@)
2) Si lim % n’existe pas, alors lim % n’existe pas.
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Ex-11-10: Soit f : I — R, ou [ est un intervalle ouvert. Montrer que s’il existe
une constante o > 1 telle que

[f@) = fWl <le—yl* Voyel,

alors f est une constante.

Ex-11-11: Soit f une fonction dérivable dans un voisinage de xg € R, telle
que f'(xg) = 0. Si f"(z¢) existe et est non-nulle, montrer que

1) f"(zo) > 0 implique que xy est un minimum local.

2) f"(x¢) < 0 implique que z( est un maximum local.

Ex-11-12: Trouver et charactériser les extremas locaux et I’ensemble image
de la fonction f:[—1,1] — R définie par

fla)=a—|z+31|+1.



