Analyse 1 MATH-101(c/pi) S. Friedli (EPFL)
Série 07: Séries Automne 2025

Ex-07-01: Etudier la convergence des séries suivantes.
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Ex-07-02: Etudier la convergence des séries suivantes.
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Ex-07-03: Discuter la convergence de la série géométrique Z q" en fonction
n=0

de q € R, en utilisant
1) le critere de d’Alembert,
2) le critere de Cauchy.

Ex-07-04: Utiliser le critere de la limite du quotient pour étudier les séries
ci-dessous.
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Ex-07-05: Parmi les séries ci-dessous, lesquelles convergent absolument ?
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Ex-07-06: Déterminer, parmi les séries ci-dessous, celles qui convergent ou
divergent.
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Ex-07-07: Considérer Z

n=>1

- 1 ?
o) Vrai ou faux?

1) Le critere de Cauchy permet de montrer que la série converge.
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La série converge, car c’est une série géométrique de raison r = 1 < 1.

)

2) Le critere de d’Alembert permet de montrer que la série diverge.
) 2
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La série diverge.

Ex-07-08: Etudier la convergence des séries données ci-dessous.
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Ex-07-10: (Cet exercice est facultatif)

Soit (ay) une suite pour laquelle les deux limites ci-dessous existent :

Ly = lim {/|ay,|, Ly = lim
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Montrer que L1 = L.



