Question 07
Soit la suite \[ x_n=e^{2\sqrt{n^2+1}-n}. \] Alors,
  • \(\displaystyle\lim_{n\to\infty}x_n=1\)
  • \(\displaystyle\lim_{n\to\infty}x_n=e\)
  • \(\displaystyle \lim_{n\to\infty}x_n=+\infty\)
  • \(\displaystyle\lim_{n\to\infty}x_n=0\)
\[\begin{aligned} 2\sqrt{n^2+1}-n&= 2n\sqrt{1+\frac{1}{n^2}}-n\\ &= \underbrace{n}_{\to+\infty}\underbrace{\left(2\sqrt{1+\frac{1}{n^2}}-1\right)}_{\to 1\gt 0} \end{aligned}\]