Timeline Analyse 1 (GM+OL), Automne 2023

Week 01, 18-22 sept

Cours 01, Mercredi 20 sept

Notions élémentaires

- II.2 Fonctions
- II.3 Cas des fonctions réelles
- II.7 Preuves par récurrence

Cours 02, Vendredi 22 sept

1. Nombres réels: \mathbb{R}

- 1.1 Introduction
- 1.2 Règles de calcul: $+, -, \cdot, \div$
- 1.3 Ordre: $\leq, \geq, <, >$
- 1.4 Intervalles
- 1.5 Valeur absolue et distance
- 1.6 Supremum et infimum

Week 02, 25-29 sept

Cours 03, Mercredi 27 sept

- 1.7 Solutions de $x^2 = 2$
- 1.8 Densité
- 1.9 Ensembles ouverts et fermés

3. Suites réelles

3.1 Définitions et exemples

Cours 04, Vendredi 29 sept

- 3.2 Limite: $a_n \to L$
- 3.3 Propriétés de la limite

3.4 Le Théorème des deux gendarmes

Week 03, 2-6 oct

Cours 05, Mercredi 4 oct

- 3.5 Les suites monotones et bornées
- 3.6 Suites qui tendent vers l'infini
- 3.7 Comportements polynômiaux, logarithmiques, exponentiels
- 3.8 Calculs de limites et indéterminations

Cours 06, Vendredi 6 oct

- 3.8 Calculs de limites et indéterminations
- 3.9 Série géométrique et applications
- 3.10 Critère de d'Alembert pour les suites

Week 04, 9-13 oct

Cours 07, Mercredi 11 oct

- 3.11 Limite supérieure, limite inférieure
- 3.12 Le Théorème de Bolzano-Weierstrass
- 3.13 Suites de Cauchy

4. Suites définies par récurrence

4.1 Définition, exemples

Cours 08, Vendredi 13 oct

- 4.2 Étude d'un cas simple
- 4.3 Remarques générales
- 4.4 Approche graphique

2. Nombres complexes: \mathbb{C}

2.1 Introduction

2.2 Définition

Week 05, 16-20 oct

Cours 09, Mercredi 18 oct

- 2.2 Définition
- 2.3 Le plan complexe
- 2.4 Exponentielle complexe
- 2.5 Racines de nombres complexes

Cours 10, Vendredi 20 oct

- 2.5 Racines de nombres complexes
- 2.6 Le Théorème Fondamental de l'Algèbre
- 2.7 Polynômes et factorisation

Week 06, 23-27 oct

Cours 11, Mercredi 25 oct

2.7 Polynômes et factorisation

5. Séries numériques

- 5.1 Définitions et exemples
- 5.2 Propriétés des séries convergentes
- 5.3 Le critère de comparaison
- 5.4 Le critère de Leibniz

Cours 12, Vendredi 27 oct

- 5.5 Séries téléscopiques
- 5.6 Séries $\sum_{n} \frac{1}{n^p}$
- 5.7 Le critère de la limite du quotient
- 5.8 Séries absolument convergentes
- 5.9 Le critère de d'Alembert

Week 07, 30 oct- 3 nov

Cours 13, Mercredi 1 nov

- 5.10 Le critère de Cauchy
- 5.11 Séries dépendant d'un paramètre

6. Fonctions réelles

- 6.1 Introduction
- 6.2 Monotonie
- 6.3 Parité
- 6.4 Périodicité (traité plus tard)
- 6.5 Max/min, sup/inf de fonctions

Cours 14, Vendredi 3 nov

6.6 Convexité/concavité

7. Limites de fonctions

- 7.1 Introduction
- 7.2 Limite $x \to x_0$
- 7.3 Le théorème des deux gendarmes

Week 08, 6-10 nov

Cours 15, Mercredi 8 nov

7.4 Limites latérales $x \to x_0^{\pm}$

HOMEWORK: 7.5 Propriétés de la limite

HOMEWORK: 7.6 Quelques indéterminations " $\frac{0}{0}$ "

HOMEWORK: 7.7 Limites infinies en un point

HOMEWORK: 7.8 Limites $x \to \pm \infty$

8. Fonctions continues

8.1 Définition de la continuité

Cours 16, Vendredi 10 nov

les règles de dérivation dérivées des fonctions élémentaires

- 8.1 Définition de la continuité
- 8.2 Prolongement par continuité
- 8.3 Continuité sur un intervalle compact
- 8.4 Le théorème de la valeur intermédiaire

Week 09, 13-17 nov

Cours 17, Mercredi 15 nov

- 8.4 Le théorème de la valeur intermédiaire
- 8.5 Continuité et calcul de limites

9. Dérivée et calcul différentiel

- 9.1 Définition de la dérivée, exemples
- 9.2 Dérivée et approximation linéaire

HOMEWORK: 9.3 Règles de dérivation

HOMEWORK: 9.4 Dérivées des fonctions élémentaires

Cours 18, Vendredi 17 nov

- 9.5 Dérivée d'une fonction réciproque
- 9.6 Dérivées latérales
- 9.7 Dérivées d'ordres supérieurs
- 9.8 Fonctions continûment dérivables

Week 10, 20-24 nov

Cours 19, Mercredi 22 nov

- 9.9 Extrema locaux et le Théorème de Rolle
- 9.10 Le Théorème des accroissements finis

Cours 20, Vendredi 24 nov

- 9.11 La règle de Bernoulli-l'Hôpital
- 9.12 Sur la recherche des extrema d'une fonction sur un intervalle [a, b]
- 9.13 Dérivée seconde et convexité/concavité

Week 11, 27 nov - 1 déc

Cours 21, Mercredi 29 nov

10. Développements limités

- 10.1 Introduction
- 10.2 Définition et unicité
- 10.3 Propriétés de base
- 10.4 La formule de Taylor

Cours 22, Vendredi 1 déc

- 10.4 La formule de Taylor
- 10.5 Utilisation de DL pour le calcul de limites
- 10.6 Composition de DL

11. Séries entières et séries de Taylor

- 11.1 Introduction
- 11.2 Séries entières

Week 12, 4-8 déc

Cours 23, Mercredi 6 déc

- 11.2 Séries entières
- 11.3 Séries de Taylor pour représenter des fonctions
- 11.4 Exemples

Cours 24, Vendredi 8 déc

12. Intégrale

- 12.1 Introduction
- 12.2 Définition de l'intégrale de Riemann-Darboux

12.3 Les fonctions intégrables

Week 13, 11-15 déc

Cours 25, Mercredi 13 déc

12.3 Les fonctions intégrables

12.4 Le Théorème de la Moyenne

12.5 Théorème Fondamental de l'Analyse

12.6 Primitives élémentaires

Cours 26, Vendredi 15 déc

12.7 Intégration: par parties

12.8 Intégration: changement de variable

HOMEWORK: 12.9 Intégration: fonctions rationnelles

Week 14, 18-22 déc

Cours 27, Mercredi 20 déc

13. Intégrales généralisées

- 13.1 Introduction
- 13.2 Intégrales généralisées du Type I
- 13.3 Intégrales généralisées de Type II

Cours 28, Vendredi 22 déc

- 13.3 Intégrales généralisées de Type II
- 13.4 Intégrales généralisées de Type III