Chapitre 3

Suites réelles

3.1 Définitions et exemples

(ici, Video: v_suites_intro.mp4)

3.1.1 Définition
Définition 3.1. Une suite est une famille infinie ordonnée de réels, indexée par des entiers :
Qngs Ang+15 Ang+25 - - -

On utilisera la notation compacte suivante : (a,,)n>n,
Une suite peut commencer par un indice ny quelconque, mais le plus souvent on considérera ny =

0 ou ny = 1. Quand le premier indice n"importe pas ou peu (ce qui sera le cas lorsqu’on étudiera
le comportement de a,, pour des indices n grands), on écrira parfois (a,,) au lieu de (a,,)n>n,-

3.1.2 Représentations

On se représente en général une suite (a,),>1 de deux facons.

La facon la plus simple est de la représenter simplement comme un ensemble de points sur la
droite, {a;,as,...} CR:

¥ ® 5 >

Du fait que cet ensemble est ordonné, cette image peut aussi s’'interpréter comme une trajectoire :
une particule est au point a; au temps n = 1, puis au point a, au temps n = 2, etc.

Mais une fagon plus intuitive de se représenter une suite est de la voir comme le graphe d'une
fonction

f:N"—=R
nw— f(n):=a,.

Ceci revient a représenter les paires de points (n, f(n)) = (n, a,) dans le plan cartésien :
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3.1.3 Exemples

Souvent, une suite est définie simplement en disant comment le n-eme terme a,, se calcule explici-
tement en fonction de 'indice n. Lorsqu’une suite est définie ainsi, chaque terme peut étre calculé
directement, indépendamment des autres, a I’aide d"une formule.

Exemple 3.2. Soit (a,,),,>1 la suite définie ainsi : pour chaque n > 1,
3n®+n—>5
p = —————
5n2 4+ 7

Dans cet exemple, a1¢000 peut se calculer directement, sans avoir forcément besoin de calculer les
autres. o

Exemple 3.3. Soit (a,,),>0, définie ainsi : ay = %, puis pour toutn > 1,
an =4a,_1(1 —a,_1).

Cette suite est définie par récurrence : a part le premier, chaque terme est défini en fonction du
précédent. Donc on ne peut calculer a;p00 que si on a déja calculé agggg, agggs, etc. Ce type de
suite sera étudié dans un chapitre a part. o

On peut définir une suite de facon tout a fait arbitraire, ce qui mene rapidement a des suites
difficiles a étudier :

Exemple 3.4. Considérons l'expansion décimale du nombre 7,
m = 3.1415926535897932384626433 . . . ,

et définissons la suite (a,),>1, comme suit :

Plus précisément : a,, est I’entier représentant le n-eme chiffre apres la virgule dans 1’expansion
décimale de 7. Une suite facile a définir, mais trés difficile a étudier... o

Informel 3.5. Donc plus tard, quand on dira “soit (a,) une suite”, il faudra garder a 'esprit que
cela signifie que chacun de ses terme est bien défini, mais qu'un terme n’a pas forcément de lien
avec les autres.
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3.1.4 Suites majorées, minorées, bornées

(ici, Video: v_suites_particulieres.mp4)

Une propriété simplificatrice, pour une suite, est que ses termes ne soient globalement pas trop
grands :

Définition 3.6. Une suite (a,,) est

* majorée si il existe une constante M telle que a,, < M pour tout n,

<
* minorée si il existe une constante m telle que a,, > m pour tout n,

* bornée si elle est a la fois majorée et minorée.

Informel 3.7. Une suite bornée est une suite qui “vit” dans un intervalle, dans le sens ott on peut
trouver deux nombres finis m < M tels que

a, € [m, M] Vn.
Exemple 3.8. Considérons la suite
an =1—n?, n=0.
Alors (a,)n>0 est majorée. En effet, n> > 0 pour tout n, et donc
a,=1-n*<1, Vn>0.

et donc en prenant M =1, on a a,, < M pour tout n.

Qe

Par contre, a,, n’est pas minorée (et donc pas bornée). En effet, montrons que pour toute constante
m, il existe un indice n tel que a,, < m. Ceci est vrai lorsque m > 0 puisque a,, < 0 dés quen > 1.
Si maintenant m < 0, alors a,, = 1 — n? < m si et seulement si n > /1 — m (on a simplement
résolu I'inéquation). Donc en prenant n'importe quel entier n plus grand que /1 — m, on a bien
que a, < m. Ceci montre qu’il n’existe aucun minorant pour cette suite. o

Exemple 3.9. Considérons la suite
an = 2sin(5n + 1) — 3cos(v/n), n>=0.
Puisque
|a,| = [2sin(5n + 1) — 3 cos(v/n)|
< 12sin(bn + 1)| + | — 3cos(v/n)]

= 2|sin(5n + 1)| + 3| cos(v/n)|
<2+3=5,
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3.1. Définitions et exemples

la suite est bornée :
—5<a, <+5, Vn.

&

Exemple 3.10. La suite (a,,),,>1, ol a,, :== néme chiffre de ’expansion décimale de 7 en base 10, est
bornée, car minorée par 0, et majorée par 9. o
Exemple 3.11. La suite a,, = (—1)"n n’est pas majorée. En effet, fixons un seuil A/ > 0 (sous-
entendu : aussi grand que 1'on veut), et prenons un entier pair n = 2k quelconque, tel que & >
M/2.0On a alors

an = ag, = (—1)**2k =2k > M .

Cette suite n’est pas minorée non plus. En effet, fixons un seuil m < 0 (sous-entendu : aussi grand
que l'on veut, négatif), et prenons un entier impair n = 2k + 1 quelconque, tel que £ > —(m—1)/2.
On a alors

an = Agppr = (—D)*TQ2k 4+ 1) = —(2k +1) <m.

a2 [
ain [

[ aii

3.1.5 Suites monotones

Définition 3.12. Une suite (a,,) est
* croissante si a, < a,1 pour tout n,
* strictement croissante si a,, < a,1; pour tout n,
* décroissante si a,, > a,+1 pour tout n,
* strictement décroissante si a,, > a,, 4 pour tout n.

Si (ay) satisfait une de ces propriétés, elle est dite monotone.

Exemple 3.13. La suite a,, = n? n > 0, est strictement croissante puisque

Exemple 3.14. La suite harmonique a,, = 1, n > 1, est strictement décroissante puisque

1 1
an+1:—<ﬁzan

n+1
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Exemple 3.15. Considérons la suite a,, = ;%7 On peut écrire

n _(n—l—l)—l_1 1

T | Cn+17
ce qui implique, puisque 2 > 1,
1
n l———=>1- = G,
(ot +2 n+1

et donc que (a,,) est croissante.

3.1.6 Pourquoi étudier les suites?

Les résultats que nous allons présenter dans les prochaines sections au sujet des suites seront
d’importance capitale pour toute la suite de ce cours. En effet, ’étude des suites représente la
porte d’entrée par laquelle plusieurs des difficultés de 1’analyse sont abordées, de fagon aussi
élémentaire que possible. En particulier, on y discutera pour la premiere fois de la notion de
limite, dans la section suivante, notion essentielle dans 1'étude d’une fonction au voisinage d'un
point.

Informel 3.16. Si on souhaite aborder quelques-unes des principales difficultés liées aux suites et a
’analyse, de maniere informelle, en évitant le langage mathématique (qui est souvent responsable
du blocage des novices), on pourra consulter le texte suivant : Le marchand de billes (billes.
pdf).

3.2 Limite:a, — L

La notion centrale de I’analyse est celle de limite, et on va 1’aborder ici pour la premiére fois, dans
le cadre simple des suites réelles. Définir rigoureusement ce que signifie “tendre vers L” est une

des difficultés rencontrées dans ce cours. Nous allons donc commencer par le cas L = 0 avant de
passer au cas général.

3.2.1 Tendre vers zéro

(ici, Video: v_suites_tendent_vers_zero.mpd)

Pour un réel z, “étre proche de zéro” signifie que la distance qui le sépare de 0, a savoir dist(z, 0) =
|z — 0] = |z|, est petite (dans un sens a définir). Donc pour voir si les valeurs d'une suite (a,,)
s’approchent de zéro, il est naturel de considérer la distance

dist(a,,0) = |a, — 0| = |a,|,
et de quantifier précisément ce qu’on entend par “cette distance devient toujours plus petite a

mesure que n augmente”.

Une autre facon d’exprimer ce que 1'on essaie de faire ici est de dire qu'une suite a,, tend vers zéro
si ses éléments se concentrent dans des régions de plus en plus petites autour de zéro, a mesure que l'indice
n augmente. La description rigoureuse d"un tel comportement est la suivante :

NumChap: chap-suites-reelles, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web: botafogo.saitis.net) 47


billes.pdf
billes.pdf
v_suites_tendent_vers_zero.mp4
botafogo.saitis.net

3.2. Limite:a,, - L

Définition 3.17. On dit qu'une suite (a,,) tend vers zéro (lorsque n — o0) si pour tout ¢ > 0 il
existe un entier N (qui dépend de ¢) tel que |a,| < € pour tout n > N, c’est-a-dire tel que

a, € [—¢,¢€] Vn > N.

On écrira alors lim a,, = 0, ou simplement a,, — 0.

n—0o0

L’animation ci-dessous représente une suite (a,),>1 qui tend manifestement vers zéro. On pourra
choisir un ¢ > 0 (slider vertical a gauche), et trouver un N tel que a,, € [—¢,¢] pour toutn > N :

aio
an a
as as L 12 ai s , ayz, 419
ar dg ® o 113 16 18
—e 9 e O ®
N—4 Ge ® 4 ° o o v 1
°
a4
e =1.062..e
Exemple 3.18. Considérons la suite
1
ap = —, n=1.
n

Montrons que cette suite tend vers zéro, dans le sens défini ci-dessus.

Fixons un € > 0, et vérifions que 1'on peut toujours trouver un entier N tel que
lan| <e  Vn>=N.

Pour ce faire, remarquons que la condition |a,| < ¢ est en fait équivalente 4 1 < ¢, et comme
cette derniere est équivalente a n > 1. Pour l'entier N, on peut prendre n’importe quel entier plus
grand ou égal a . On peut par exemple prendre (rappelons que |z :=partie entiere de ) :

1
N = {—J +1.
£
On a ainsi trouvé un entier N tel que n > N implique |a,| < €. o

[ ]
.. ag
H ) ® & ® o o © o @
N=2

e =1.700...

Informel 3.19. On voit, dans ce dernier exemple, comme le N cherché dépend de ¢! Car en géné-
ral, plus ¢ > 0 est petit, plus il faut augmenter n pour faire rentrer a,, dans l'intervalle [—¢, ¢].
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3.2.2 Tendre vers L € R

(ici, Video: v_suites_tendent_vers_L.mp4)

La définition de “tendre vers L” est seulement une adaptation de la définition de “tendre vers
zéro” : pour que a,, tende vers L, il faut que la suite a], := a,, — L tende vers zéro.

Définition 3.20. Soit L € R. On dit qu'une suite (a,,) tend vers L (lorsque n — o0) si pour tout
¢ > 0 il existe un entier positif N tel que |a,, — L| < € pour tout n > N, c’est -a-dire tel que

an € [L—¢,L +¢] Vn > N.

On dira alors que L est la limite de la suite (a,,), et on écrira lim a, = L ou simplement a,, — L.

n—oo

e=1.700...

Lorsqu’il existe un L € R tel que (a,) tend vers L, on dit que la suite converge; si elle ne converge
pas, on dit qu’elle diverge.

Exemple 3.21. Considérons la suite (a,,),,>0 définie par

_3n+2
o417

Qn

Montrons, en utilisant la définition de limite donnée plus haut, que

o
e 4 T g

Fixons donc un ¢ > 0, et vérifions que 1'on peut trouver un entier NV tel que

D’abord, écrivons explicitement la différence

3’ 3n+2 1

3
A 2n+1_§’_2(2n+1)'

On voit que cette derniére expression peut étre rendue arbitrairement petite en prenant n suffi-
samment grand. Plus précisément : fixons un € > 0. Une simple manipulation montre que

1 1/1
- < — 2—(——1).
22n+1) ~° "Z5\%e

Pour N, il suffit donc de prendre n’importe quel entier plus grand ou égal a (5= — 1). Pour étre
tout a fait précis, définissons (rappel : || =valeur entiére de z)

Ve l3E-0)
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3.3. Propriétés de la limite

Par cette définition de N, n > N implique que |a, — 3| <e.
On a donc bien montré que (a,) est convergente, et que sa limite vaut 3.

Remarquons que peu importe comment il est choisi, N devient de plus en plus grand & mesure
que € > 0 devient plus petit. o

Exemple 3.22. Considérons la suite (a,,),,>1 définie par
a, = (—1)".

Comme cette suite ne prend que les valeurs +1 (lorsque n est pair) et —1 (lorsque n est impair), elle
est nécessairement divergente. En effet, pour n'importe quel L € R, sie > 0 est pris suffisamment
petit (en fait:si 0 < ¢ < %), alors il existe forcément une infinité d’indices n tels que a,, ¢ [L —
e, L+e¢] o

az ay ag as aio a2 a4 ais ais a
L] L] L] e ® L] L] L] L q

a as as ay g a1 a13 ais arry aig
L] L] L] ° ] ° L] L] L] ]

2
F&

3.3 Propriétés de la limite

(ici, Video: v_suites_proprietes.mp4)

Le calcul de limites sera grandement facilité par 1'utilisation des propriétés générales satisfaites par
les suites convergentes, que nous commencons a décrire maintenant.

La premiere propriété dit qu’une suite ne peut pas tendre vers deux limites différentes :
Lemme 11. Si une suite est convergente, alors sa limite est unique.

Preuve: Supposons, par 'absurde, que a,, — L et a, — L', avec L # L'. Si on suppose par exemple que
L < L', alors on peut toujours prendre un ¢ > 0 suffisamment petit, de maniere a ce que les intervalles
[L —¢,L+¢|et[L' —e, L'+ ¢] soient disjoints :

?
L On on L

L [ d

t ' 3 T E— >
L-& L+€ L-¢ L'+¢

Plus concrétement, on peut garantir que ces intervalles sont disjoints en prenant par exemple

L' - L
€= )
3
Maintenant,
* Comme a,, — L, il existe N tel que a,, € [L — ¢, L + €] pour toutn > N.
=

* Comme a,, — L', il existe N’ tel que a,, € [L' — ¢, L’ + ¢] pour tout n > N'.
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3.3. Propriétés de la limite

Cela implique que pour n > max{N, N'}, a,, doit étre dans les deux intervalles en méme temps, une
contradiction puisque ces intervalles sont disjoints. O

La deuxieéme est que les valeurs des termes d’une suite convergente ne peuvent pas devenir trop
grands :

Lemme 12. Si une suite converge, alors elle est bornée.

Preuve: Soit (ay,)n>1 une suite convergente. Nommons L sa limite. La convergence de a,, vers L implique
en particulier que l'on peut fixer, par exemple, ¢ := 1, et considérer 1’entier N tel que a,, € [L — 1, L + 1]
pour toutn > N :

a,
4 GZ

N S

En particulier on a, pour toutn > N, que L — 1 < a,, < L + 1. Si on définit maintenant

M := max{ay,as,...,an—1,L + 1}

m := min{ay,a9,...,an—_1,L — 1},

alors on a bien garanti que m < a,, < M pour toutn > 1. O

Lemme 13. Si a,, — L, alors |a,| — |L|.

Preuve: L'inégalité triangulaire permet d’écrire
|an| = [(an = L) + L < lan — L] + |L],

ainsi que
IL| = [(L = an) + an| < |an — L] + |an|,

En combinant ces inégalités, on obtient
—lan — L| < |an| — |L| < |an, — L],
qui est équivalente a
|lan| — |L|| < |an — L]

Soit maintenant ¢ > 0. Puisque a,, — L, il existe N tel que |a,, — L| < ¢ pour tout n > N. Par l'inégalité
ci-dessus, ceci implique aussi que ||a,,| — |L|| < € pour toutn > N. O

Remarque 3.23. Remarquons que la suite des valeurs absolues |a,| peut avoir une limite, méme
si a,, est divergente. C’est par exemple ce qui se passe avec la suite a,, = (—1)". Ceci implique que
la réciproque du lemme précédent est fausse en général. o

Finalement, listons quelques propriétés qui sont utilisées constamment dans les calculs de limites.
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Lemme 14. (Opérations sur les limites) Soient (a,,) et (b, ) deux suites convergentes : a,, — L1, b, — L.
Alors

1) Limite de la somme :

lim (a, + b,) = (lim an) + (lim bn) =11+ L.

n—oo n—oo n—oo

2) Limite du produit :
lim (a, - b,) = (lim an) . (lim bn) =LL,.

n—o0 n—oo n—oo

3) Limite du quotient : si Ly # 0, alors

lim a,

o o BB L
n—oo b, lim b, Ly
n—oo

4) Sia, < b, pour tout n suffisamment grand, alors Ly < Lo.

Remarque 3.24. Dans la derniere propriété, les “<” ne peuvent pas étre remplacés par des “<”. En
effet, on peut trés bien avoir deux suites convergentes telles que a,, < b,, pour tout n suffisamment
grand, mais telles que lim,_, a, = lim,_, b,. Comme exemple simple, on peut considérer les
suites a, = —= et b, = =. o
Preuve: 1. Par 'inégalité triangulaire,

|(an +bn) — (L1 + L2)| = [(an — L1) + (bn — L2)|
< ]an —L1| + ‘bn —LQ‘.

Fixons un ¢ > 0, et posons ¢’ := ¢/2. Comme a,, — L1, il existe N, tel que |a, — L1| < & pour tout
n > N,. Comme b, — Lo, il existe N, tel que |b, — La| < &’ pour tout n > Nj. On a donc, pour tout
n > N := max{Ng, Np},

|(an +bp) — (L1 + La)| < |an — L1| + |by, — La| < 26" = €.
2. Comme a,, converge, elle est bornée : il existe C' > 0 telle que |a,| < C pour tout n. On peut donc écrire

|anbn - L1L2| = |anbn —anlo +apls — LILQ‘
< |an||bn - L2| + |L2||an - L1|
< C|bn - L2’ + |L2||an - L1| .

Soit € > 0. Soit N, tel que |a, — L1| < ﬁ pour tout n > N, (serait dommage que Lo = 0!), et soit IV, tel
que |b, — La| < 5 pour tout n > Nj. On a alors que pour tout n > N := max{N,, Np},

’anbn - LILQ‘ < C‘bn - L2| + ‘L2Han - L1|
g g
<C— L =c.
a0 Tkl =«

3.1l suffit de montrer la propriété dans le cas oti a,, = 1 pour tout n, c’est-a-dire de montrer que b,, — Lo # 0
implique que
1 1

— = —.
bn L2

(En effet, on utilise alors la propriété du produit démontrée plus haut, pour conclure dans le cas général que
P = an- é — Ly- L%Z.) Pour ce faire, commengons par utiliser le fait que b,, — Lo implique |b,| — |L2| > 0:
donc il existe Ny tel que |b,| > |L2|/2 > 0 pour tout n > Ny. Ensuite, on peut écrire, pour tout n > Ny, que

1 1
bn Lo

_ ’bn - L2’
Lol - [bn]

2
< by, — Lo .
e
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2
Fixons maintenant ¢ > 0, et posons ¢’ = % Comme b,, — Lo, on sait qu’il existe N’ tel que |b, — La| < &’

pour tout n > N'. Sion pose N = max{Ny, N'}, on a aussi, pour toutn > N,

1 1 2 2
— — —| < 75lbh — Lo| < 53¢ =¢
b La| S TLP TS P
On a donc montré que 1/b,, — 1/Lo.
4. La preuve de la derniere propriété est laissée en exercice. O

Exemple 3.25. Considérons la suite (z,,) définie ainsi :

6n + 4

Tn = 8n3 + 4n?

a convergence de cette suite peut paraitre a priori difficile a étudier, mais remarquons qu’on peu
L d tt t t t difficil tud ! t

I’écrire comme un produit :
13421 1

T 2onyinz 2%

Tn

ol a, = %, b, = -5. On a montré précédemment que a,, — 2, et on montre facilement que
b, — 0; en effet, sie > 0, alors |b,| < ¢ dés que n > N, out N est un entier quelconque plus
grand que 1/,/c. On peut maintenant utiliser la propriété ci-dessus pour des limites de produits,

et conclure que

N |
M| o
o
I
o

. .1 L, . .
Jam = i gt =5 (i 00) (i ) =
On a donc montré que z,, converge et que sa limite est égale a zéro. Il est important d’apprécier
le fait que si on avait voulu le montrer uniquement a partir de la définition de limite, il faudrait
montrer que pour tout ¢ > 0, il existe un N tel que

6n + 4
—| <€, Vn > N.
8n3 4 4n? c "

Partir a la recherche de ce N est possible, mais représente une tache considérablement plus com-
pliquée que la simple utilisation de la propriété pour la limite d"un produit. o

3.4 Le Théoréme des deux gendarmes
(ici, Video: v_suites_gendarmes.mp4)

Théoreme 3.26. Soit (z,,) une suite. Soient (a,,), (b,) deux suites telles que
1) a, <z, < by, pour tout n suffisamment grand,
2) lim a, = lim b, = L.

n—oo n—oo
Alors (x,,) converge, et sa limite vaut L :

lim x, = L.
n—oo

Preuve: Soit Ny un entier tel que a,, < z,, < b, pour tout n > Nj.

Fixons € > 0.
* Puisque a, — L, il existe N, tel que a,, € [L — ¢, L + €] pour tout n a

=
* Puisque b, — L, il existe N, tel que b,, € [L — ¢, L + €] pour tout n > Nj,.
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3.4. Le Théoréme des deux gendarmes

Définissons 1’entier
N = max{No, Na, Nb} .

Sin > N, alors on a en particulier que a,, > L —c et b, < L + ¢, ce qui implique
L—e¢e<a, <z, <b, <L+c¢.
De ces dernieres inégalités, on tire que |z, — L| < €.

On a donc bien montré que pour tout ¢ > 0 il existe un entier N tel que |z, — L| < € pour tout n > N. Ceci
signifie que x,, — L. O

Exemple 3.27. Considérons la suite (z,,),>1, définie par

2+ cos(19n” +n")
- .

Tn

La partie contenant cos(- - - ) étant compliquée, on peut utiliser le fait qu’elle est bornée : —1 <
cos(---) < +1, ce qui permet d’écrire

122—1<xn\2+1: §
n n n
o =

Mais, puisque lim, o @, = limy o0 = = 0 et limy, 00 by, = 3limy0e + = 0, le théoreme des deux
gendarmes garantit que lim,,_,, z,, = 0. o

Informel 3.28. Une bonne utilisation du théoréme, pour montrer qu’une suite (z,,) converge
et trouver sa limite, nécessite de trouver deux “gendarmes” (a,) et (b,) qui non seulement en-
cadrent (z,), mais qui possedent en plus la méme limite! Dans des situations simples, comme
dans I'exemple précédent, on obtient souvent des gendarmes efficaces en majorant/minorant cer-
taines parties de z,, qui ne sont pas essentielles dans le comportement pour des indices n grands.
Mais parfois, trouver des gendarmes qui ont la méme limite peut s’avérer plus difficile!

Exemple 3.29. Considérons la suite (z,,),>1, définie par

271
—, n>1.

Ty = I
n.

Comme le numérateur est un produit de n fois le méme nombre “2”, alors que le dénominateur
est un produit de n nombres dont presque tous sont plus grands que 2, le dénominateur doit croitre
beaucoup plus vite que le numérateur. Ceci suggere que x,, — 0, ce que 1’on va essayer de montrer
a l'aide du théoréme des deux gendarmes.

Comme z,, > 0, il suffit de trouver une suite b, telle que

* 0< 2z, <b,, et
* b, — 0.

Or si on écrit explicitement, pour tout n > 3

2:2-2---2
Tpn =

nn—1)n-2)---3-2---1

2 2 2 2 2 2

non—-1n-2 3 21
e—— =~ =N =
<1 <t <=l

4

<—=:b,.

n

Puisque b,, — 0, ceci implique bien que z,, — 0. o
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3.5. Les suites monotones et bornées

Voyons ensuite une conséquence trés utile du théoreme des deux gendarmes :
Corollaire 8. Si (z,,) est bornée et si y,, — 0, alors x,y, — 0.

Preuve: Comme () est bornée, il existe C' > 0 telle que —C' < z,, < C pour tout n. Onadonc 0 < |z,yy| =
|z ||yn| < Clynl, ce qui donne
—Clyn| < 2nyn < Clyn| .

Puisque y,, — 0, ceci implique +C'|y,| — 0. Par le Théoreme des deux gendarmes, on conclut que |z,y,| —
0, ce qui implique z,y, — 0. O

3.5 Les suites monotones et bornées

(ici, Video: v_suites_monotones_bornees_convergent .mp4)

On a vu qu’une suite convergente est forcément bornée. Mais le contraire n’est pas vrai : une suite
bornée ne converge pas forcément.

Exemple 3.30. La suite a,, = (—1)" ne converge pas, mais elle est bornée, puisque |a,| = 1, ce qui
implique —1 < a,, < 1 pour tout n. o

Par contre, si une suite est bornée et monotone, alors elle converge :

Théoreme 3.31. Soit (a,) une suite.
1) Si (ay,) est croissante et majorée, elle converge.

2) Si (ay,) est décroissante et minorée, elle converge.

Q, o, a, a, a,

Preuve: Soit (a,,) une suite croissante et majorée. Considérons 1’ensemble A C R défini comme étant I'en-
semble de tous les points de la suite :

A= {al,ag,ag,...}.

Puisque la suite est bornée, A est majoré; on peut donc considérer le réel L défini par
L:=supA.

Nous allons montrer que a,, — L.

Par définition, le supremum est un majorant, et donc a,, < L pour tout n. De plus, comme le supremum
est le plus petit majorant, on a que pour tout € > 0, il existe n, tel que L — ¢ < ay,,. Or comme la suite est
croissante, on a

L—-—e<an <an41<an42<--< L,

ce qui implique |a,, — L| < € pour tout n > n,.

On a ainsi montré que pour toute > 0, on a |a, — L| < € pour tout n suffisamment grand. Ceci montre que
anp — L.

(Dans le deuxieme cas, lorsque la suite est décroissante et minorée, on adapte cet argument apreés avoir
défini L := inf A.) O
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3.5. Les suites monotones et bornées

Si le résultat peut paraitre intuitif, la preuve a montré qu’il repose entierement sur 1’existence d'un
supremum pour les ensembles majorés de R.

Le théoreme ci-dessus garantit que si une suite est monotone et bornée, alors elle possede une
limite L, qui est soit un supremum (si la suite est croissante et majorée), soit un infimum (si la
suite est décroissante et minorée). Parfois, on peut calculer cette limite L explicitement :

Exemple 3.32. Considérons la suite (a,,),,>0 définie par

n
n+1"

ay =

Nous avons montré précédemment que cette suite est strictement croissante. Or elle est aussi
majorée, puisque n < n + 1 implique

n n+1
= < =1
n-+1 n-+1

Qn,
Le théoreme ci-dessus garantit donc qu’elle converge, et que sa limite est égale a

L = sup{ag, a,as,...}.
On peut vérifier (exercice!) que L = 1. o

L’'exemple suivant présente un cas dans lequel le théoreme permet de montrer qu’'une certaine
suite converge, mais sans pour autant donner la valeur de la limite.

Exemple 3.33. Soit (b,,) la suite définie ainsi :

1
b1 = ﬁ
1 1
hEETy
oo 1, 11
Tp Tt
1 1 1 1 1
bii=mtmtatpt ot
b= ey Ly Ly
T2 T2 Tzt n? ' (n+41)?
Cette suite est croissante puisque b,; = b, + m > b,,. Pour montrer qu’elle est bornée, remar-
quons que pour tout k > 2,
1 1 1 1 1

BT kk k-1 k-1 K

En utilisant cette inégalité pour £ = 2,3,...,n, on obtient une borne supérieure dans laquelle
beaucoup de termes se téléscopent :

1 1 1 1 1

bn:ﬁ+§+§+ﬁ+"'+n2
h () G+ G+ (o —) (D
N~ TV ~ s TV s TV -
=0 =0 =0 =0
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3.6. Suites qui tendent vers l'infini

On a donc que
1 1 1 1

by < s+-——=2——<2.
12 1 n n
On a ainsi montré que (b,) est majorée par M = 2, et comme elle est aussi croissante, elle
converge : il existe L € R tel que
lim b, = L.
n—o0
Puisque 1 < b, < 2,onaaussiquel < L < 2. o

Informel 3.34. Euler a montré en 1734 que cette limite vaut

1 1 1 1 72
L:_ - - E— -««:—Il. 4 4
12+22+32+42+ 6 LR

3.6 Suites qui tendent vers 1'infini

(ici, Video: v_suites_tendent_vers_infini_2.mp4)

Dans les sections précédentes, on a surtout considéré les suites convergentes, c’est-a-dire celles qui
tendent vers une limite finie lorsque n — oc.

On n’étudiera pas systématiquement les suites divergentes, dont les comportements peuvent étre
aussi compliqués que variés, mais nous introduirons quand-méme quelques outils qui permet-
tront de décrire certains de ces comportements divergents.

Par exemple, une classe importante de suites divergentes est celle des suites qui tendent vers I'in-

fini.

Définition 3.35. Soit (a, ) une suite réelle.

1) On dit que (a,) tend vers +oco (lorsque n — o0) si pour tout M > 0 il existe un entier positif
Ny (qui dépend en général de M) tel que

an>M VTL}NO

On notera, formellement, lim a, = 400, ou simplement a,, — +oc0.
n—oo

2) On dit que (a,,) tend vers —oo (lorsque n — o0) si pour tout M < 0 il existe un entier positif
Ny (qui dépend en général de M) tel que

Qp, § M Vn 2 NQ c
On notera (formellement) lim a, = —oo, ou simplement a,, = —oc.

n—o0

Donc a, tend vers +oo si elle dépasse et reste au-dessus de n’importe quel seuil M > 0 (sous-
entendu : arbitrairement grand) lorsque son indice n est pris suffisamment grand.

Sur 'animation suivante, fixer une valeur du seuil M > 0, puis chercher un N tel que a,, > M
pour toutn > N :
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3.6. Suites qui tendent vers 'infini

- wiy
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aiy
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o M ®
a ® aig aie
8
a ag @
6 @] °® a2 13
[ a [ ] '
M e 7
as a ay as 4
[ ‘9o @
Kina
N=3 -

Exemple 3.36. Montrons que la suite (a,,) définie par

2n —5
7

Ay =

tend vers +o0. Pour cela, fixons un seuil arbitraire M/ > 0, et remarquons que

2n—5 TM +5
a4 > M "M e a2

7 2
Soitdonc N := |45 | 4+ 1.Sin > N, alors n > ™2 et donc a,, > M. Comme on peut trouver un
tel N pour tout seuil M > 0, ceci montre bien que a,, — oc. o
Exemple 3.37. Considérons ensuite

n2
ap = ——
n n+ 1 3

et montrons que a,, — co. Pour un seuil M > 0, on a
a,>M < n*—Mn—M>=0
Le polyndéme P(z) = 2* — Mz — M possede deux racines,

M+ VM?4M
- - ,

Tt

et il est positif partout en dehors de l'intervalle [x_, z]. En définissant N := |z, | + 1, on a bien
a, > M des quen > N. o

3.6.1 Propriétés des suites qui tendent vers l'infini

Tout comme les suites convergentes, celles qui tendent vers l'infini obéissent a certaines proprié-
tés.
Théoreme 3.38. Soient (a,) et (b,) deux suites. Si a,, — 400,

1) alors = — 0.

2) etsib, — +oo,alors a, + b, — +oo et a,b, — +o0.

3) et si b, est bornée, alors a,, + b, — +oo et Z_Z — 0.

4) et s’il existe § > 0 tel que b, > § pour tout n suffisamment grand, alors a,b,, — +o00. (En particulier,
si b, — L,avec L > 0, alors a,b,, — +00.)

5) etsib, > a, pour tout n suffisamment grand, alors b,, — +o0.

(ici, Video: v_suites_tendent_vers_infini_preuves.mp4)
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3.7. Comportements polyndmiaux, logarithmiques, exponentiels

Exemple 3.39. Considérons la suite
z, =n’ — Tsin(%) cos(v/n),
que l'on peut écrire comme z,, = a,, + b,, ot
an =n®, by, = —7sin(%) cos(v/n).

On voit que a,, — 0o. On ne sait pas grand chose sur le signe de b, mais on sait qu’elle est bornée
puisque

|b,| = |—T7sin(2) Cos(\/ﬁ)} <7,
et donc

lim z, = lim (a, + b,) = +00.

Exemple 3.40. Considérons
T, = /n(2 + cos(n”)),

que l'on peut écrire comme z,, = a,b,, ol
a, =/n, b, = 2 + cos(n°).

On a a,, — oo, mais b, n’a visiblement pas de limite. Pourtant, on peut remarquer que cos(n®) >
—1, et donc
bp=2+cos(n’)>2—-1=1=:6>0.

On a donc

lim z, = lim a,b, = +0c0.
n—oo n—oo

3.7 Comportements polynémiaux, logarithmiques, exponentiels

(ici, Video: v_suites_comportement_polynexplog.mp4)

3.7.1 Suites et fonctions élémentaires

Dans cette section, on compare différents types de comportements a 1'infini, a savoir

* les exponentielles de base > 1,

n

e, =17
* les puissances positives a > 0,
Pn = n®
* et les logarithmes de base b > 1:
by = 1Ogb(n) :

Toutes ces suites tendent vers l'infini lorsque n — oo :

lim e, = +00, lim p, = +o00, lim ¢,, = +c0.
n—0o0 n—oo n—0o0

Pourtant, elles ne tendent pas vers l'infini a l'infini : certaines tendent vers l'infini plus vite que
d’autres.
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3.7. Comportements polyndmiaux, logarithmiques, exponentiels
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I est donc naturel d’établir rigoureusement une hiérarchie entre ces trois comportements :

Théoreéme 3.41. (Comparaison des divergences lorsque n — oo)

1) Un exponentielle tend vers l'infini plus vite que n’importe quelle puissance : pour toute base
r > 1 et toute puissance o > 0,

2) Une puissance tend vers l'infini plus vite que n"importe quelle puissance de logarithme : pour
toute base b > 1, et tous o, B > 0,

lim (10gb(”)) ’

n—o00 n

=0.

Preuve: 1. Remarquons d’abord que si on sait traiter les cas ol1 « est entier, alors on sait aussi traiter le cas

’ a al+1 v
d’un a quelconque. (En effet, pour tout n > 1, 75 < ”Lri ,donc si 75 — 0, avec o =|al+1 > «,alors

n< :
= — 0 aussi.)

Pour simplifier, considérons le cas & = r = 2. On aimerait donc montrer que

TL2

2—n—>0.

L’idée est d’utiliser la formule du bindme pour montrer que le dénominateur est plus grand qu’une puis-
sance supérieure a n?. En effet, la formule du bindme avec z = y = 1 donne

n

2" = (141)" = zn: <Z> IULESY (Z) .

k=0 k=0

Or comme tout les termes de cette derniere somme sont positifs, la somme est plus grande que n’importe
lequel de ces termes. Dans notre cas, il suffit de ne garder que le terme correspondant a £ = 3

Zn: <Z> > <§> ~ n;)!:a! - s 16)(n =

k=0

Ceci implique que

n? n? 6n2
0< =< = .
n n(n—lg(n—2) nin—1)(n—2)
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3.8. Indéterminations

On voit que dans ce dernier quotient, le numérateur se comporte en n?, alors que le dénominateur se
comporte en n?3, ce qui implique que sa limite est nulle. Plus précisément,

i 6n2 I 1 6 0
1m = 1um -_-—e_—— .
n—00 n(n—l)(n—2) n—)oo\ri/ (1_%)(1_%)

—0 \,_—*)6

2
Par le théoreme des deux gendarmes, on conclut donc que 57 — 0.

Dans le cas général, pour une exponentielle de base r > 1 et une puissance entiére o quelconque, on peut
adapter la preuve ci-dessus. En effet, en écrivant » = 1 + A\, out A > 0, et en utilisant & nouveau la formule
du binéme, on peut minorer

P = (14 A" > (ail>v+1.

Le reste de la preuve s’adapte facilement (voir la vidéo ci-dessus), et mene a 4+ — 0.

Une preuve semblable de cette premiere affirmation, méme si ¢a ne se voit pas tout de suite, peut se trouver
ici (lien web).

2. On peut démontrer la deuxiéme affirmation a ’aide de la premiere. O

Informel 3.42. Le théoreme implique par exemple que

1000
lim Losic)

nsoo  1,0-0001

= (.

Pourtant, la petitesse du quotient est difficile a observer (sur I’animation ci-dessus par exemple),
dans le sens ot il faut que n soit vraiment tres grand pour que ce quotient commence a se rappro-
cher de zéro...

On reviendra sur les limites étudiées ci-dessus, lorsque nous étudierons la Regle de Bernoulli-
I"'Hopital (lien vers la sectionm_derivee Bernoulli lHopital).

3.8 Indéterminations

On a pour l'instant considéré deux types de limites :
x celles qui convergent vers une limite finie : lim z, = L,
n—oo

* celles qui tendent vers 'infini : lim z,, = +o0.

n—o0

Or les limites importantes de 1’analyse, celles qui permettent de faire avancer le développement
du calcul différentiel et intégral, sont toutes des limites qui impliquent une forme ou une autre
d’indétermination.

Une limite représente une indétermination lorsqu’elle fait intervenir une combinaison de gran-
deurs qui est telle qu’on ne peut pas déterminer sa valeur directement a 1’aide d"une des pro-
priétés de base des limites vues précédemment . Plus précisément, une indétermination apparait
lorsque une suite est composée d’autres suites, présentant des comportement du type “tend vers
zéro” ou “tend vers l'infini”.

On décrit les principales indéterminations en considérant une suite x,, formée a partir de deux
autres suites, que 1’on notera a,, et b,. On suppose les comportements de a,, et b, connus lorsque
n — 00.
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3.8. Indéterminations

St etsi.. ... alors la limite de... | ... est une indétermination
4 “+00 bn — 400 T, = Q, — bn “50 — 00"
a, — 0 b, — +o0 Ly = by, “Umen”
a o0
a, — 00 b, = o0 e u' Xy
(‘)ﬂ_ o0
a 0
ay — 0 bn- -0 L= A o
by, 0
a, =1 b, = +o0 = r;'.._gf'* o
an — +00 bn — 0 Iy = (I-{;l” 507
Ap — 0 {IJn_ — 0 Fp= al_]'!:lu u{}(] ’”

Nous ne traiterons pas les indéterminations de fagon générale puisque justement, leur présence
indique qu'une étude au cas par cas est nécessaire. Nous allons donc discuter certaines de ces in-
déterminations, et présenter quelques techniques qui permettent de les résoudre, sur des exemples.
Notons que ces techniques ne sont pas spécifiques au cas n — oo : toutes seront utiles plus tard,
dans d’autres types de limites (comme = — ).

"7
o0

3.8.1 Indéterminations du type

Exemple 3.43. Nous avons déja rencontré (lien vers la sectionm_suites_limites_infinies)

la suite
n2

RS E
qui est du type “2” puisque n* — +oo et n + 1 — +00. Nous avions également montré qu’elle
tend vers 400, l'intuition derriére ce fait étant la présence de 'exposant “2” fait que le numérateur
I'emporte dans la limite n — oo.

Tn

Une autre fagon de traiter ce quotient est de 1’écrire comme un produit :

2

n n
= n .
n+l ~~ n+1

=an \71)/_/

On a alors a,, — +oo et b, — 1, ce qui implique (par une propriété énoncée et démontrée ici (lien
vers la sectionm_suites_limites_infinies))que

n2

n-+1

= a,b, = +00.

Ainsi, en récrivant notre suite, on a pu la mettre sous une forme qui permet de déduire son com-
portement a ’aide d"une propriétés de base des suites. o
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3.8. Indéterminations

Informel 3.44. Lorsqu’on est en présence d'un quotient §* dans lequel a, et b, sont les deux
grands, on essaiera d’extraire ce qui est a l'origine de cette grandeur, en mettant un terme dominant
en évidence. On pourra alors faire des simplifications dans la fraction *, et éventuellement faire
disparaitre 1'indétermination.

Exemple 3.45. Considérons
3n®—17Tn+1
im ——,
n—oo Hn3 + sin(n)

1400 17

qui est effectivement une indétermination de la forme “ 22

, puisque

*x a, =3n® —17n+ 1 — 400 (polyndme de degré 3, dont le coefficient principal est 3 > 0),

x b, = 5n® +sin(n) — +o00 (5n® — oo et sin(n) est bornée).
Ce que l'on peut faire ici est extraire les termes dominants dans a, et b,, qui sont les termes
contenant la puissance n® :

n

b,  5n3 +sin(n) n3(5 4 Smmy 5 - sl Y

n3

an_3n3—17n+1_n3(3—3l—§+%)_3—711—24—711—3_a’

En simplifiant par n® on a obtenu un nouveau quotient qui dans la limite n — oo n’est plus

indéterminé. En effet, a;, — 3 et b/, — 5, et donc
a a3
lim — = lim 2 = —.

<

Exemple 3.46. Les comparaisons des comportements logarithmiques, polynomiaux et exponen-
tiels (lien vers la section m_suites_hierarchie), ont consisté a résoudre les indéterminations

“22"” suivantes :
B
log, (n) n®
azn:( () —0, T, =— —0.
ne re
Remarquons que ces limites ont requis une analyse plus fine, puisque numérateur et dénomina-
teur sont de nature différente (on n’a pas pu simplement extraire de “terme dominant”). o

3.8.2 Indéterminations du type “oco — c0”

(ici, Video: v_suites_tendent_vers_infini_conjugue.mp4)

Souvent, une suite est définie par une différence de deux nombres qui deviennent de plus en plus
grands a mesure que n augmente. Or la différence de deux nombres grands peut, a priori, avoir
n’importe quel type de comportement.

Exemple 3.47. Considérons

: 3 2
i (= 5m)

dans laquelle a,, = n® — +oc et b, = 5n* — co. Comme a,, tend vers l'infini plus vite que b, da
au fait qu'il contient un terme de degré 3 > 2, on a avantage a mettre n® en évidence et obtenir un
produit,

Maintenant, on a toujours a,, — co, mais puisque b}, = 1 — 2 — 1 # 0, leur produit tend vers +oo.
On a donc

lim a,b, = lim a,b, = +00.
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3.8. Indéterminations

L’identité élémentaire
(a—b)(a+b)=a®>—b

est souvent utile lorsqu’on a affaire a une différence a — b, si on la formule comme suit :

_(a—=Db)a+b) 1 5 o
b=y et 7Y

Ici, on a multiplié et divisé par le conjugué de a — b. Ainsi, a la différence “a — b” se substitue la
différence “a? — b?”, qui est parfois plus facile a traiter.

Cette approche est particulierement efficace lorsqu’on a des différences de racines :

Exemple 3.48. Considérons

Ve L=V

qui est bien du type “oo — co”. En multipliant et divisant par le conjugué,

VIFT = Vi = (Vi T - i) Y

(n+1)—n

T Vatl+n
1
T Vatltn

Ce quotient n’est plus indéterminé :
1
lim{(vVn+1—+yn{=lim ————=0
o

Parfois, on pourra (méme si c’est assez rare) résoudre une indétermination “oo — 00”, de la forme
lim,, o (an — by,), en extrayant explicitement de a,, et de b,, la méme partie divergente :

Exemple 3.49. Considérons le cas “oo — 0o” suivant :

lim (log(e‘/ﬁ +2) — log(eV™ + 1))

n—oo

Ici, on peut remarquer qu’en écrivant

an = log(eV™ +2) = log(eV™(1 4+ 2¢7V")) = v/n + log(1 + 2e7V") ,
b, = log(eY™ + 1) = log(eV™(1 + V™)) = /i + log(1 + e V"),

ce qui montre que a, et b, contiennent tous deux un “y/n”, qui tend vers 'infini, et qui disparait
lorsqu’on fait la différence :

lim (a, — b,) = lim <log(1 +2e7V") —log(1 + e_‘/ﬁ))

n—o0 n—oo

— log(1) — log(1)
=0.

C’est donc un cas d'une indétermination “oo — co” dans laquelle on peut montrer que les infinis
se “compensent exactement”. o
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240 rr

3.8.3 Indéterminations du type “j
Nous reviendrons au indéterminations “3”, puisqu’elles sont au coeur du probleme de la dériva-
tion, un outil central de 1’analyse.

Pour l'instant, donnons déja une limite classique “3” :

Théoreme 3.50. Soit (x,,) une suite représentant des mesures d’angles en radians. Si x,, # 0 pour tout n,

et si x,, — 0, alors

sin(z,,)

lim =1.
n—00 T,

Informel 3.51. Attention, il est important de mentionner que le sinus, dans sin(z,,), est calculé en
supposant que l’angle z,, est mesuré en radians. Sinon, la limite n’est pas la méme!

Preuve: Comme la fonction z — % est paire, on peut supposer que x,, > 0 pour tout n.

Puisque z,, — 0,ona 0 < z, < § pour tout n suffisamment grand. Considérons donc un angle sur le cercle
trigonométrique, dont la mesure en radians z,, est entre 0 et g :

= ~— —~A |
cos(xn)

Remarquons que le triangle OAP est inclus dans le secteur circulaire OB P, qui est lui-méme inclus dans
le triangle OBM. On a donc

aire(A OAP) < aire(secteur OBP) < aire(AOBM).

On explique ici (lien vers la section m_elementaire_trigo)comment calculer I’aire d'un secteur. Ainsi,
en exprimant chacune de ces aires en fonction de z,,

1 : 1,12 < 1
5 cos(zy,) sin(zy,) < 52,17 < 5 tan(zy,) .
Ce deux inégalités sont équivalentes a

sin(z,,) < 1

cos(zy) < < .
— T, cos(zy,)
an N——
bn

Puisque z,, — 0, on a a,, = cos(x,) — 1letb, — % = 1. On conclut donc avec le théoreme des deux

gendarmes. O
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3.8.4 Surl’équivalence entre les indéterminations

Toutes les indéterminations du tableau présenté plus haut sont équivalentes, dans le sens ou1 on
peut toujours transformer une indétermination en une autre. Voyons les principaux cas.

* Supposons par exemple que la limite de §* soit “32”. Cela implique que i — 0, et donc en
écrivant $* = ay, - i, la limite devient du type “oo - 0”.
* Supposons ensuite que la limite de 7 soit “2”. En écrivant
an, a,
2 = exp(log ) = exp(log(ax) — log(b))

on voit que l'on fait apparaitre log(a,) — log(b,), qui dans la limite est du type “oo — c0”.

x Soit finalement a’» une suite qui dans la limite n — oo est du type “1°”. En écrivant a’» =
exp(by log(a,)), comme a,, — 1 implique log(a,) — 0, b, log(a,,) est du type “oco - 0”.

3.9 Série géométrique et applications
(ici, Video: v_suites_serie_geometrique.mpd)
Théoréme 3.52. Soit r € R, et, pour tout n > 1, définissons la suite
Spi=l4+r+ri+r 4.l

Dans la limite n — oo,
* sy, diverge et s, — +oosir > 1,
* Sy = = sifr] <1,
* s, divergesir < —1.
Preuve: Sir = 1, alors
Sp=14+14+124+134+ - 41" =n+1,
ce qui implique s,, — +oc.

Sir # 1, onavu (lien vers la sectionm_elementaire_sommes_produits) que

1— Tn-&-l
LR
On peut alors considérer séparément les cas :
% 1 > 1. Dans ce cas, on écrit plutot
7m—o—l -1
Sn = —7

Commer —1>0etr"t! — 0o, 0ona s, — +o0c.

* —1 <r < 1.Danscecas. |r"| = |r|" — 0car0 < |r| < 1, et donc s,, — 1%7“

* r = —1. Dans ce cas, s, = %(1 — (—=1)"*1), et donc ne converge pas.

x r < —1. Dans ce cas, " = (—|r|)" = (=1)"|r|", et puisque |r|" — 400, s, n'a pas de limite lorsque
n— oo.

O

On peut observer le comportement de la suite (s,),>o en fonction de —1 < r < 1 sur l'anima-
tion suivante. (On peut en particulier voir comme la suite n’est plus monotone pour des valeurs
négatives de )
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517 818 510 520 521 522 523 524 £
........Sm.sn.%12.%13.’3!?.‘93??.5:f?.;f.........,..,..,........‘
87 ° ®
56 ° [ ]
85 °
34 o
S3 @

52
S1

° b r = 0.800

Co

Dans le cas |r| < 1, on écrit souvent le résultat sous la forme

1

T+r+r+r4+...=
1—7r

La somme infinie, dans le coté gauche, s’appelle la série géométrique, et sa somme est la valeur
du c6té droit, a savoir 1. (On étudiera les séries dans un chapitre ultérieur.)

On peut utiliser la série géométrique pour obtenir des formules utiles pour des sommes infinies
de méme nature :

Exemple 3.53. Fixons un |r| < 1, et considérons la somme
l—r+r2 =4t - ...
Remarquons que cette derniére peut se récrire
L4 (=) + (=)’ + (=) + (=) + ()

qui n’est autre que la série géométrique de raison —r. Comme | — 7| = |r| < 1, cette derniere
converge et sa somme vaut

4

L—r4r” =4t =P+ =

o
Exemple 3.54. Fixons un |r| < 1, et considérons la somme
r+rt et et
On peut récrire cette derniére ainsi :
r+rt et =14+ttt ) =1
1
- 1
1—r
. T
17
o
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Exemple 3.55. Partons, a I'étape zéro, d'un triangle équilatéral que 1'on suppose d’aire égale a
AO =1:

nb itérations: n = 0

run

Puis, a I'étape 1, on divise chacun de ses trois cOtés en trois parties égales, et on remplace chaque
partie du milieu par un triangle équilatéral. L’objet obtenu apres cette premiére itération (mettre
n = 1 dans I’animation ci-dessus) a un bord constitué de 12 segments. Remarquons que l'aire de
chacun des trois triangles équilatéraux rajoutés vaut §, et donc apres une itération 1'aire totale
vaut

1
Puis on recommence avec chacun des segments du bord de A;, que 1'on divise en trois parties

égales, et dont on remplace la partie du milieu par un triangle équilatéral d’aire (3)2. On obtient
ainsi un objet dont 1’aire vaut maintenant

1 1
Ay=143-=43-4.—.
2= Lo g 92

(Voir aussi I'explication de la vidéo ci-dessus.)

En itérant ce processus a l'infini (diviser a chaque étape les segments du bord en trois parties
égales, remplacer celui du milieu par un triangle équilatéral, etc), on obtient un objet limite appelé
flocon de von Koch (lien web), qui est un objet fractal (lien web). (Attention : dans I’animation,
ne pas tester des n trop grand, cela risque de faire du mal a votre browser!)

Quelle est laire totale du flocon, obtenu apres avoir fait n — oo ?

Remarquons qu’a chaque étape, le nombre de segments du bord est multiplié par 4, et qu’a I’étape
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n, I'aire de chacun des petits triangles rajoutés vaut ;. On a donc

A():l

1
A1:1+3-§

1 1
Ao=14+3-24+43-4.—
2=tho g 92

1 1 1
A:=14+43-24+3-4-—4+3.4-4.-—
3= Ao g 0z T 93

1 1 1 1
A, =1+4+3-=+34-—=+3-4-4-—+---+3.4v1. —
+ 9+ 92+ 93+ + o

que l'on peut récrire plus proprement :

A—1+1{1+4+4Q+43+ 4n_1}
"o 3 9 92 93 Tgn-l

On reconnait ici une somme géométrique de raison r = 3 < 1, qui dans la limite n — co devient
une série géométrique convergente pour laquelle on peut utiliser notre formule :

1 1

lim A, =14 ——

19
l+--2=2.
T35

3.9.1 Application : existence du nombre e

(ici, Video: v_suites_nombre_e.mp4)

Dans cette section, on étudie la suite

Dans la limite n — oo, e,, méne a une indétermination de la forme “1*°”, et il n’est pas clair, a
priori, de comment se comporte vraiment e,,.

Informel 3.56. Donnons deux arguments légitimes, mais tous les deux faux, concernant le compor-
tement de ¢, = (1 + 2)” dans la limite n — oo.

* On peut penser, que lorsque n est grand, le terme = devient négligeable, et donc écrire
en~(140)"=1,

ce qui meéne a penser que la limite de e, est égale a 1.
* En se rappelant que méme s'il est petit, le terme € = L est toujours strictement positif, ce qui
mene a penser, puisque 1 + ¢ > 1, que

en>~(14+e)" = 0.

On va pourtant montrer que le vrai comportement de cette suite ne suit aucun de ces scénarios.
On peut déja s’en convaincre en testant (lien vers la section m_graphes_suite_reelle) soi-
méme, avec z,, =CODE>pow(1 + 1/n,n)<CODE...
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Théoréme 3.57. A Soit (e,),>1 la suite définie ci-dessus. Alors
1) (ey) est strictement croissante,
2) (ey) est bornée : 2 < e, < 3 pour tout n > 1.

Par conséquent, il existe e € [2, 3] tel que

lim e, = €.
n—0o0

Preuve: Pour commencer, utilisons la formule du bindme de Newton (lien vers la sectionm_recurrence)

pour écrire e, sous une forme qui permette de mieux étudier sa dépendance en n :

<1+ ) _1+Z<)1”’f )k

e
B “1an-Dn-2)---(n—k+1)
_1+ZE n-n---n

k=1

n 1 -
IR O ([ BTy

k=1

On utilise deux fois cette expression.

* Affirmation :(e,) est croissante. En utilisant I'expression précédente, pour n + 1

n+11
e =143 (- ) (- 51)
k=1 a e
n+11
14y H0-5) (=5
k=1
"1
=1 - -k =
k=1

strictement croissante, on a en particulier que e,, > e; = 2.

* Affirmation :(e,) est majorée par M = 3. En utilisant encore une fois 1’expression ci-dessus,

en =143 (1) (1= 4
k=1 <1 <1
1
<1+ZE
k=1 "
1 1
k=2

et donc
1

"1 21
en<1+1+zﬁ<l+zgzl+i:3_
k=2 §=0

2

Dans l'avant-derniere égalité, on a utilisé le fait que si k = n + 1, alors 1 — =1 — (. Comme e,, est
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On a donc montré que (e,,) est croissante et majorée, donc elle converge. Puisque 2 < e,, < 3 pour tout n,
sa limite appartient aussi a cet intervalle. O

On connait aujourd’hui des milliards de chiffres (lien web) de I’expansion décimale de e. Ses
premiers termes (lien web) sont

e = 2.718281828459045235360287471352662497 . . .

Euler a montré en 1737 que e est un nombre irrationnel.

3.10 Critere de d’Alembert pour les suites

Théoreme 3.58. (Critere de d’Alembert pour les suites)
Soit (a,,) une suite telle que la limite suivante existe :

Ap+1

p = lim

n—o0

Qn

* Si0 < p < 1,alors (a,) converge et a,, — 0.

* Si p > 1,alors (a,) diverge, et si en plus a,, > 0 pour tout n suffisamment grand, alors a,, — +o0.

Preuve: Supposons pour commencer que 0 < p < 1. On peut donc choisirun § > 0 tel que p <1 -,

o -g -8

et trouver un entier N tel que
An+1

Qn

<1-9§ Vn>= N,

c’est-a-dire
lant1] < (1 —0)|an| Vn > N.

En utilisant cette inégalité pour N,
lan 1] < (1= 9d)|an],

en l'utilisant pour V + 1,
lanto| < (1= 8)lani1| < (1—6)*[an],

et ainsi de suite, en 1'utilisant pour N + &,
axa] < (1= 8)layseop| < - < (1 - 8)Fa]
ce qui implique, puisque (1 — §)* — 0 lorsque k — oo, que
A anl = T okl =0

Ceci implique a,, — 0.

Supposons maintenant que p > 1, et fixons un § > 0 tel que p > 1 + 4. On a alors 'existence d’un entier N

tel que
An+1

Qn

=149 Vn > N.

En utilisant cette inégalité pour IV,
lant1] = (14 8)|an],
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en l'utilisant pour V + 1,
lanta| = (1+ 6)lans1| = (14 6)*[an],

et ainsi de suite, en 'utilisant pour N + £,
lansk] = (14 6)|antg) =+ = (14 6)*|an],
ce qui implique, puisque (1 + §)* — +o0 lorsque k — oo, que
A anl = g Joaval = oo
Ainsi, (ay) n’a pas de limite, et si a,, > 0 pour tout n suffisamment grand, alors

lim a, = lim |a,| = +00.
n—oo n—oo

O

Informel 3.59. Ce critere est utile, mais il s’applique seulement a des suites pour lesquelles |a,|
tend tres vite vers zéro, ou tres vite vers l'infini. (Voir exemples plus bas.)

Exemple 3.60. Considérons la suite

n2

= 2—n .
On a montré précédemment que cette suite tendait vers zéro, en montrant que le comportement

exponentiel I'emporte sur le polynomial. Voyons comment le critere de d’Alembert permet d’ob-
tenir le méme résultat. Calculons

Qn

n 1 2 2n+1
= i 58] = g (1 D2
n—ool @, n—00 n2/2n
1. (n+1)2? 1
ST Tl
Par le critere, ceci implique que a,, — 0. o

Le critere est souvent utile dans I’étude du comportement de quotients présentant une indétermi-
nation du type “2”, et ot on ne voit pas clairement comment extraire un terme dominant.

Exemple 3.61. Considérons
n!

Ty = )

nn

également considérée précédemment. Ecrivons le quotient

Tppr  (n+1)! n" oot 1
z,  nl (n+D)H T (n+ 1) (14 Lyn’
Ainsi,
N EA | 1 1 1
Pl e | T (14 D)7 e 2718
On conclut que z,, — 0. o

Il est important de souligner que le critere de d’Alembert ne dit rien dans le cas o1 p = 1. Or beau-
coup de suites tres simples, dont le comportement est bien connu, sont des suites pour lesquelles
p = 1. Voyons trois exemples.
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Exemple 3.62. Pour la suite a,, = %, on a

1 n
p:lim”TH:hm =1,
donc le critere ne permet pas de conclure. (Pourtant, on sait bien que a,, — 0!) o

Exemple 3.63. Pour la suite a,, = n, on a aussi p = 1, donc le critére ne permet pas de conclure.
(Pourtant, on sait bien que a,, — c0!) o

Exemple 3.64. Pour la suite a,, = (—1)", ona aussi p = 1, donc le critere ne permet pas de conclure.
(Pourtant, on sait bien que a,, n"a pas de limite!) o

3.11 Limite supérieure, limite inférieure

On sait qu'une suite convergente est bornée, mais le contraire n’est pas vrai : une suite peut étre
bornée sans converger (par exemple : (—1)").

On va voir ici que 'on peut malgré tout associer a toute suite bornée deux nombres, appelés limite
supérieure et limite inférieure, qui donnent des informations utiles sur le comportement de la suite
a l'infini. On verra aussi que ces deux nombres sont utiles pour étudier la convergence de la suite,
puisqu’ils sont égaux si et seulement si la suite converge.

(ici, Video: v_suites_limsup.mp4)

Soit (a,,) une suite bornée. On définit deux nouvelles suites, (M,,) et (m,,) en posant, pour tout n,

M,, :=sup{an,ans1,. ..},

my, = inf{a,, api1,. .. }.

Ces deux suites de réels sont bien définies puisque 1’on suppose (a,,) bornée. De plus,

x Comme M, majore {a,, a,1, ...}, ona en particulier que a,, < M,,.
x Comme m,, minore {a,, a,+1, ...}, on a en particulier que a,, > m,,.
On peut donc écrire
m, < a, < M,  Vn. (3.1)

Lemme 15. Les suites (M,,) et (m,,) sont monotones et bornées. Plus précisément,
* (M,) est décroissante et minorée.
* (my,) est croissante et majorée.
En particulier, ces deux suites sont convergentes.
Preuve: Définissons A,, := {an, an+1,. .. }. Puisque A, 41 C A,, on a d'une part que sup A, 41 < sup 4,, ce

qui donne
Mn+l < MTL7

et d’autre part que inf 4,1 > inf A4, ce qui donne
Mpp1 Z My

Comme (a,,) est bornée, (M,,) est minorée, et (m,,) est majorée. On a donc existence des limites lim,,_,~ M,
et lim,, oo My, O

On observe ces propriétés sur 'animation ci-dessous. La suite (a,) est représentée par les points
noirs, (M,,) par les points rouges, et (m,,) par les points bleus :

NumChap: chap-suites-reelles, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 73


v_suites_limsup.mp4
botafogo.saitis.net

3.11. Limite supérieure, limite inférieure

Maintenant que l'on sait que ces suites sont convergentes, il est naturel de donner des noms a
leurs limites :
Définition 3.65. Soit (a,,) une suite bornée, (M,,) et (m,,) définies comme ci-dessus.

1) La limite supérieure de (a,) est définie par

limsupa, := lim M, .
n—oo n—o0

2) La limite inférieure de (a,,) est définie par

liminf a, := lim m,,.
n—oo n—0o0

Remarque 3.66.  « Une suite bornée peut ne pas converger, mais ses limites supérieures et in-
térieures existent toujours.
x Puisque m,, < M, pour tout n, on a que

liminfa, < limsupa, .
n—00 n—00

o

Exemple 3.67. Considérons la suite a,, = (—1)", qui comme on le sait est bornée mais ne possede
pas de limite. Quel que soit la valeur de n, 'ensemble {a,,, a,+1, ...} contient une infinité de +1,

et une infinité de —1, ce qui implique M,, = +1 et m,, = —1. Ainsi,
lim M, = +1,
n—oo
lim m, = —1,
n—o0

qui signifie
limsupa, = +1,
n—oo

liminfa, = —1.
n—oo

Exemple 3.68. Considérons a,, = % Puisque (a,,) est décroissante,

M, = sup{an, ani1,...}

1 1
= Ssu —
p n7n+17
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Aussi,
my, = inf{a,, api1,. ..}
. 1 1
=inf < —, s 0 =20
n n+1
On a donc
limsupa, = liminfa, =0.
n—oo n—oo
Remarquons que dans ce cas, on sait aussi que lim a,, = 0. o
n—oo

On a vu dans ce dernier exemple un cas d’une suite convergente pour laquelle les limites supé-
rieures et inférieures avaient une valeur commune. C’est en fait un critere :

Théoreme 3.69. Soit (a,,) une suite bornée. Alors (a,,) converge si et seulement si ses limites inférieures
et supérieures sont égales. Plus précisément :

lim a, = L & liminf a, = limsupa, = L.
n—00 n—r00 =60

Bien-stir ce résultat est aussi utile si on veut montrer qu'une suite bornée ne converge pas : il suffit
de voir que ses limites supérieures et inférieures sont différentes.
Preuve: (Voir aussi la vidéo)

= Si a, — L, alors pour tout € > 0 il existe N tel que |a,, — L| < € pour tout n > N. Ceci implique que
L—e<a,<L+e, Yn=N,
et donc en particulier que pour toutn > N,
M, = sup{an,ant1,...} < L+¢e,

et
my, = inf{ay, apnt1,...} =2 L—¢.
Par conséquent,

L —e¢ <liminfa, <limsupa, < L+c¢.
n—00 n—0o0

Comme ¢ > 0 est arbitraire, on a
liminf a,, = limsupa, = L.
n—00 n—00

«: Supposons que liminf, o a, = limsup,,_,,, a, = L. Si on fixe € > 0, alors on a d"une part qu’il existe
un N, tel que
sup{an, ap+1,...} < L+e, VYn > Ny

et d’autre part qu’il existe un N_ tel que
inf{an,ant1,...} =L —¢, Vn > N_
Ceci implique, en particulier, que
L—-e<a,<L+e, Vn >N,

otton a posé N = max{N_, N, }. Ceci montre que a,, — L. O

Exemple 3.70. Considérons la suite (a,,),>o définie par

an = sin(§ +nf).
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Ses premiers termes n = 0, 1, 2, 3 sont

LV2 V2 V2 V2
2 ) Y 2 ) 2 Y
Par la périodicité du sinus, le reste de la suite s’obtient en répétant cette séquence. On a en parti-
culier que pour tout n,
V2 V2

Mn =4+— s n— " "4~ -
2 " 2
On a donc
2
limsupa, = —|—£ ,
n— 00 2
L V2
liminf a, = ——.
n—00 2
Par le théoreme précédent, on en conclut que (a,,) est divergente. o

3.12 Le Théoreme de Bolzano-Weierstrass
Informel 3.71. Supposons qu’a l'aide d’un stylo bleu, on place une infinité de points, un a un,
dans un intervalle [a, b :

o

I B ey i S B
Le Théoreme de Bolzano-Weierstrass affirme que peu importe comment on choisit ces points, il existe
forcément un point de 'intervalle proche duquel vont s’accumuler une infinité de points bleus.

(ici, Video: v_suites_Bolzano_Weierstrass.mp4)

Pour énoncer le théoreme rigoureusement, il nous faut un peu de terminologie :

Définition 3.72. Soit (z,,),>0 une suite, et 0 < ng < n; < ny < ... une suite d’entiers, strictement
croissante. Si on pose
by =y, ,

la suite (by)r>0 = (%, k>0 est appelée sous-suite de (x,,),,>0.

Une sous-suite s’obtient donc a partir de (z,,),>¢ en ne gardant que certains termes, et en ignorant
tous ceux dont I'indice est entre deux entiers consécutifs de la suite (n)>o :
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n,=13 n, =4 Nz Ny=40

x,,@,x;,x; J@xsi@’x‘ ""' 'x’ ’l x‘“""

En choisissant les entiers n; et en considérant (z,, ), on dit qu’'on a extrait une sous-suite de
(Tn)n-
Exemple 3.73. Considérons la suite (z,,),>0 définie par

T, = sin(nf).

On comprend cette suite en plagant I’angle n7 sur le cercle trigonométrique et en regardant son
sinus évoluer sur 1’axe Oy. Ses premiers termes, en partant de n = 0, sont

V2 V2 V2o Ve

1,———,0.
2 2 27 I Y

717
2

707

* Si on considere les indices pairs, a savoir nj, = 2k,

n=2a
@
=1
“33'--0- _--"-.n
“""‘ Oﬂ=o

n=3
-
nzé
alors (x,, )k>o est la suite 0,1,0,—1,0,1,0,—1, ...
% Si on considere les entiers multiples de 4, nj, = 4k,
n=2
°
nz3 o _‘.._..'\:l
nsY4 =
® @ °

“’5."'- - - e ---c.”z’

alors (x,, )k>0 est une suite constante puisque x,, = x4, = sin(km) = 0 pour tout k.

Ces deux exemples ont proposé des sous-suites le long desquelles on observait une certaine régu-
larité, mais on peut considérer des sous-suites arbitraires, par exemple celle obtenue en prenant
ny. = k* + [Vk], pour lesquelles on n’observe en général aucune régularité particuliere. o

NumChap: chap-suites-reelles, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web: botafogo.saitis.net) 77


botafogo.saitis.net

3.12. Le Théoréme de Bolzano-Weierstrass

Théoreme 3.74. (Théoreme de Bolzano-Weierstrass) De toute suite bornée (x,,), on peut extraire une
sous-suite convergente. Plus précisément : Si x,, € [a,b] pour tout n, alors il existe L € a,b] et une
sous-suite (z,, ) telle que x,,, — L.

Preuve: Soit L := lim sup,,_, ., ©, ’est-a-dire

L= lim M,,

n—oo

ot M,, = sup{xn, Znt1, ... }. Considérons une suite (¢;);>1 positive, tendant vers zéro. (Pour fixer les idées,
o 1
n peut choisir ¢; := =.
on peut choisir ¢ := 3.)

* j = 1:Par définition de la limite, il existe n tel que
L-% <My <L+%.
Par définition du supremum, il existe n; > n} tel que

L—e1 <2y, <L+er.

* j = 2: Par définition de la limite, il existe n/, > n; tel que

L—%gMné gL-i—%Q
Par définition du supremum, il existe ny > nf tel que
L—ey <y, <L+eg.

* etc.

Ainsi, on a construit une suite (ny) strictement croissante telle que pour tout &,
L—¢e,<my, <L+eg.

Ceci signifie bien que x,, — L. O

Exemple 3.75. Considérons la suite (z,,),>o définie par
2, = cos(e¥ + € sin(5n%)) .

Puisque z,, € [—1, 1] pour tout n, le théoreme garantit 1'existence d'un réel L € [—1,1] et d'une
sous suite (z,, ) telle que x,,, — L lorsque k — oc. o

Voyons un exemple simple dans lequel la sous-suite peut étre donnée explicitement.
Exemple 3.76. Considérons la suite (z,,),>o définie par

n

= DT

qui est bornée puisque |z,| = ;75 < 1. Cette suite ne converge pas, mais le théoréme garan-
tit 'existence d’une sous-suite convergente. Ici, on peut extraire explicitement deux sous-suites
convergentes, assez naturellement :

* Sion ne regarde que les indices pairs, c’est-a-dire que 1’on considére n;, = 2k, alors on obtient

la sous-suite
2k

2k +1°

Lo =

qui converge vers 1 lorsque £ — oo.
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* Si on ne regarde que les indices impairs, c’est-a-dire que 1’on considere n;, = 2k + 1, alors on

obtient la sous-suite
2k +1
€T = -
T 2k v 2
qui converge vers —1 lorsque k£ — oc.

Donc dans cet exemple, on peut extraire de la suite deux sous-suites différentes, qui ont des limites
différentes :

'nmPnir.: parivs
———
xXg X3 X, X Xy X,

wter g g [] (] ] | I TR

<

Pour finir, remarquons qu’en général, la conclusion du théoreme n’est plus vraie si la suite n’est
pas bornée :

Exemple 3.77. La suite z,, = n n’est pas bornée, et elle ne possede aucune sous-suite convergente.
o

3.13 Suites de Cauchy

(ici, Video: v_suites_Cauchy.mp4)

Remarquons que si une suite (a,,) converge, alors la distance entre deux de ses éléments consécutifs
tend vers zéro :
|apnt1 —an| = 0 lorsque n — oo.

En effet, si lim,,_, @, = L, on peut écrire

|@ni1 — an| = [(@ni1 — L) = (an — L)
< |a/n+1 —L| + |an—L|
—_—— ——

—0quand n—oco0  —0 quand n—oo

Mais on peut en fait en dire un peu plus : la distance entre deux de ses éléments quelconques tend vers
zéro a mesure que leurs indices grandissent.

| — an| = 0 lorsque m,n — co.
En effet, on peut toujours écrire

Ay — 6Ln| - |(am _L) + (L_an)|
< lawm =L + |a,— L
—— ——

—0 quand m—oo  —0 quand n—oo

Cette propriété porte un nom :
Définition 3.78. (a,,) est une suite de Cauchy si Ve > 0 il existe un entier NV tel que

la, —am| <e VYm,n>=N.

On a donc démontré, ci-dessus, que toute suite convergente est une suite de Cauchy, qui est la pre-
miere moitié du théoréeme fondamental suivant :
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Théoreme 3.79. Dans R, une suite (a,,) est convergente si et seulement si c’est une suite de Cauchy.

Preuve: Soit (a,,) une suite convergente : a,, — L. Fixons € > 0, et considérons un entier N tel que |a,, — L| <
5 pour tout n > N. Si on considere deux entiers m,n > N, on peut utiliser I'inégalité triangulaire et écrire

|am - an| = |(am - L) + (L - an)’
<lam — L) +an — L <e/2+¢/2=¢.
Et donc (a,,) est une suite de Cauchy.
Pour montrer que toute suite de Cauchy est également convergente, voir la vidéo ci-dessus. O

Exemple 3.80. Considérons

oL 1 ()" K (—1)F
e TR R R e
k=

o

Montrons que cette suite possede une limite, en montrant que c’est une suite de Cauchy. Pour ce
faire, étudions la différence |a,, — a,,|. En prenantn > m > 2,

(D} (-1
k! k!

m
k=0 k=0

—~ (-1)
P !
k=m+1
"1
>
k=m+1
- 1
> 5
k=m+1

n—1

)=

lan — am| =

=

N

N

On a utilisé k! > 2¥~! (pour tout k > 2), fait le changement d’indice j = k — 1, et utilisé la formule

pour une somme géométrique de raison r = 3.

Donc si on fixe £ > 0, puisqu'il existe N tel que 5 < € pour tout m > N, on peut conclure que
sin>m > N, alors
la, —am| < €.

Ceci montre que (a,,) est une suite de Cauchy. Par le théoreme, la limite lim,,_,, a,, existe. o

Le fait que dans R, toute suite de Cauchy et convergente est une des propriétés centrales des réels;
ici, c’est une conséquence (pas directe, certes) de I’Axiome qui garantit que dans R tout ensemble
non-vide majoré posséde un supremum. Et en fait, on peut méme montrer que la convergence
des suites de Cauchy est équivalente a 1'existence du supremum.
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Il est important de souligner que cette équivalence n’a pas lieu dans les rationnels. En effet, on
peut introduire la méme notion de suite de Cauchy dans Q, et montrer que toute suite convergente
a, € Q est une suite de Cauchy. Par contre, il existe des suites de Cauchy dans Q qui ne convergent
pas dans Q. Par exemple, la suite

est une suite de rationnels (puisque a,, est une somme finie de rationnels), et on peut montrer
comme ci-dessus que c’est une suite de Cauchy, et donc qu’elle converge.

Par contre, on peut montrer que la limite de a,, est e = 2.718 . . ., qui est irrationnel (voir la preuve
donnée plus loin dans cette section (lien vers la section m_fonctions_EXPLOG), cette vidéo
(Numberphile) (lien web), ou encore celle-ci (Michael Penn) (lien web)). Donc (a,,) est une suite
de Cauchy (de rationnels), qui converge dans R mais pas dans Q.

On dit que R est un corps complet (car toute suite de Cauchy converge), alors que Q est aussi un
corps, mais qui n’est pas complet.
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