
Chapitre 3

Suites réelles

3.1 Définitions et exemples

(ici, Video: v_suites_intro.mp4)

3.1.1 Définition
Définition 3.1. Une suite est une famille infinie ordonnée de réels, indexée par des entiers :

an0 , an0+1, an0+2, . . .

On utilisera la notation compacte suivante : (an)n⩾n0

Une suite peut commencer par un indice n0 quelconque, mais le plus souvent on considérera n0 =
0 ou n0 = 1. Quand le premier indice n’importe pas ou peu (ce qui sera le cas lorsqu’on étudiera
le comportement de an pour des indices n grands), on écrira parfois (an) au lieu de (an)n⩾n0 .

3.1.2 Représentations

On se représente en général une suite (an)n⩾1 de deux façons.

La façon la plus simple est de la représenter simplement comme un ensemble de points sur la
droite, {a1, a2, . . . } ⊂ R :

Du fait que cet ensemble est ordonné, cette image peut aussi s’interpréter comme une trajectoire :
une particule est au point a1 au temps n = 1, puis au point a2 au temps n = 2, etc.

Mais une façon plus intuitive de se représenter une suite est de la voir comme le graphe d’une
fonction

f : N∗ → R
n 7→ f(n) := an .

Ceci revient à représenter les paires de points (n, f(n)) = (n, an) dans le plan cartésien :

NumChap: chap-suites-reelles, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 43

v_suites_intro.mp4
botafogo.saitis.net


3.1. Définitions et exemples

3.1.3 Exemples

Souvent, une suite est définie simplement en disant comment le n-ème terme an se calcule explici-
tement en fonction de l’indice n. Lorsqu’une suite est définie ainsi, chaque terme peut être calculé
directement, indépendamment des autres, à l’aide d’une formule.

Exemple 3.2. Soit (an)n⩾1 la suite définie ainsi : pour chaque n ⩾ 1,

an =
3n3 + n− 5

5n2 + 7
.

Dans cet exemple, a10′000 peut se calculer directement, sans avoir forcément besoin de calculer les
autres. ⋄
Exemple 3.3. Soit (an)n⩾0, définie ainsi : a0 = 1

3
, puis pour tout n ⩾ 1,

an = 4an−1(1− an−1) .

Cette suite est définie par récurrence : à part le premier, chaque terme est défini en fonction du
précédent. Donc on ne peut calculer a10′000 que si on a déjà calculé a9′999, a9′998, etc. Ce type de
suite sera étudié dans un chapitre à part. ⋄

On peut définir une suite de façon tout à fait arbitraire, ce qui mène rapidement à des suites
difficiles à étudier :

Exemple 3.4. Considérons l’expansion décimale du nombre π,

π = 3.1415926535897932384626433 . . . ,

et définissons la suite (an)n⩾1, comme suit :

a1 = 1 , a2 = 4 , a3 = 1 , a4 = 5 , a5 = 9 , a6 = 2 , . . .

Plus précisément : an est l’entier représentant le n-ème chiffre après la virgule dans l’expansion
décimale de π. Une suite facile à définir, mais très difficile à étudier... ⋄

Informel 3.5. Donc plus tard, quand on dira “soit (an) une suite”, il faudra garder à l’esprit que
cela signifie que chacun de ses terme est bien défini, mais qu’un terme n’a pas forcément de lien
avec les autres.
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3.1. Définitions et exemples

3.1.4 Suites majorées, minorées, bornées

(ici, Video: v_suites_particulieres.mp4)

Une propriété simplificatrice, pour une suite, est que ses termes ne soient globalement pas trop
grands :

Définition 3.6. Une suite (an) est

⋆ majorée si il existe une constante M telle que an ⩽M pour tout n,

⋆ minorée si il existe une constante m telle que an ⩾ m pour tout n,

⋆ bornée si elle est à la fois majorée et minorée.

Informel 3.7. Une suite bornée est une suite qui “vit” dans un intervalle, dans le sens où on peut
trouver deux nombres finis m < M tels que

an ∈ [m,M ] ∀n .

Exemple 3.8. Considérons la suite

an = 1− n2 , n ⩾ 0 .

Alors (an)n⩾0 est majorée. En effet, n2 ⩾ 0 pour tout n, et donc

an = 1− n2 ⩽ 1 , ∀n ⩾ 0 .

et donc en prenant M = 1, on a an ⩽M pour tout n.

Par contre, an n’est pas minorée (et donc pas bornée). En effet, montrons que pour toute constante
m, il existe un indice n tel que an < m. Ceci est vrai lorsque m ⩾ 0 puisque an ⩽ 0 dès que n ⩾ 1.
Si maintenant m < 0, alors an = 1 − n2 < m si et seulement si n >

√
1−m (on a simplement

résolu l’inéquation). Donc en prenant n’importe quel entier n plus grand que
√
1−m, on a bien

que an < m. Ceci montre qu’il n’existe aucun minorant pour cette suite. ⋄

Exemple 3.9. Considérons la suite

an = 2 sin(5n+ 1)− 3 cos(
√
n) , n ⩾ 0 .

Puisque

|an| =
∣∣2 sin(5n+ 1)− 3 cos(

√
n)
∣∣

⩽ |2 sin(5n+ 1)|+ | − 3 cos(
√
n)|

= 2| sin(5n+ 1)|+ 3| cos(
√
n)|

⩽ 2 + 3 = 5 ,
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3.1. Définitions et exemples

la suite est bornée :
−5 ⩽ an ⩽ +5 , ∀n .

⋄
Exemple 3.10. La suite (an)n⩾1, où an := nème chiffre de l’expansion décimale de π en base 10, est
bornée, car minorée par 0, et majorée par 9. ⋄
Exemple 3.11. La suite an = (−1)nn n’est pas majorée. En effet, fixons un seuil M > 0 (sous-
entendu : aussi grand que l’on veut), et prenons un entier pair n = 2k quelconque, tel que k >
M/2. On a alors

an = a2k = (−1)2k2k = 2k > M .

Cette suite n’est pas minorée non plus. En effet, fixons un seuil m < 0 (sous-entendu : aussi grand
que l’on veut, négatif), et prenons un entier impair n = 2k+1 quelconque, tel que k > −(m−1)/2.
On a alors

an = a2k+1 = (−1)2k+1(2k + 1) = −(2k + 1) < m .

⋄

3.1.5 Suites monotones

Définition 3.12. Une suite (an) est

⋆ croissante si an ⩽ an+1 pour tout n,

⋆ strictement croissante si an < an+1 pour tout n,

⋆ décroissante si an ⩾ an+1 pour tout n,

⋆ strictement décroissante si an > an+1 pour tout n.

Si (an) satisfait une de ces propriétés, elle est dite monotone.

Exemple 3.13. La suite an = n2, n ⩾ 0, est strictement croissante puisque

an+1 = (n+ 1)2 = n2 + 2n+ 1︸ ︷︷ ︸
>0

> n2 = an .

⋄
Exemple 3.14. La suite harmonique an = 1

n
, n ⩾ 1, est strictement décroissante puisque

an+1 =
1

n+ 1
<

1

n
= an

⋄
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3.2. Limite : an → L

Exemple 3.15. Considérons la suite an = n
n+1

On peut écrire

an =
n

n+ 1
=

(n+ 1)− 1

n+ 1
= 1− 1

n+ 1
,

ce qui implique, puisque 2 > 1,

an+1 = 1− 1

n+ 2
> 1− 1

n+ 1
= an ,

et donc que (an) est croissante.
⋄

3.1.6 Pourquoi étudier les suites?

Les résultats que nous allons présenter dans les prochaines sections au sujet des suites seront
d’importance capitale pour toute la suite de ce cours. En effet, l’étude des suites représente la
porte d’entrée par laquelle plusieurs des difficultés de l’analyse sont abordées, de façon aussi
élémentaire que possible. En particulier, on y discutera pour la première fois de la notion de
limite, dans la section suivante, notion essentielle dans l’étude d’une fonction au voisinage d’un
point.

Informel 3.16. Si on souhaite aborder quelques-unes des principales difficultés liées aux suites et à
l’analyse, de manière informelle, en évitant le langage mathématique (qui est souvent responsable
du blocage des novices), on pourra consulter le texte suivant : Le marchand de billes (billes.
pdf).

3.2 Limite : an → L

La notion centrale de l’analyse est celle de limite, et on va l’aborder ici pour la première fois, dans
le cadre simple des suites réelles. Définir rigoureusement ce que signifie “tendre vers L” est une

des difficultés rencontrées dans ce cours. Nous allons donc commencer par le cas L = 0 avant de
passer au cas général.

3.2.1 Tendre vers zéro

(ici, Video: v_suites_tendent_vers_zero.mp4)

Pour un réel x, “être proche de zéro” signifie que la distance qui le sépare de 0, à savoir dist(x, 0) =
|x − 0| = |x|, est petite (dans un sens à définir). Donc pour voir si les valeurs d’une suite (an)
s’approchent de zéro, il est naturel de considérer la distance

dist(an, 0) = |an − 0| = |an| ,

et de quantifier précisément ce qu’on entend par “cette distance devient toujours plus petite à
mesure que n augmente”.

Une autre façon d’exprimer ce que l’on essaie de faire ici est de dire qu’une suite an tend vers zéro
si ses éléments se concentrent dans des régions de plus en plus petites autour de zéro, à mesure que l’indice
n augmente. La description rigoureuse d’un tel comportement est la suivante :
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3.2. Limite : an → L

Définition 3.17. On dit qu’une suite (an) tend vers zéro (lorsque n → ∞) si pour tout ε > 0 il
existe un entier N (qui dépend de ε) tel que |an| ⩽ ε pour tout n ⩾ N , c’est-à-dire tel que

an ∈ [−ε, ε] ∀n ⩾ N .

On écrira alors lim
n→∞

an = 0, ou simplement an → 0.

L’animation ci-dessous représente une suite (an)n⩾1 qui tend manifestement vers zéro. On pourra
choisir un ε > 0 (slider vertical à gauche), et trouver un N tel que an ∈ [−ε, ε] pour tout n ⩾ N :

Exemple 3.18. Considérons la suite

an =
1

n
, n ⩾ 1 .

Montrons que cette suite tend vers zéro, dans le sens défini ci-dessus.

Fixons un ε > 0, et vérifions que l’on peut toujours trouver un entier N tel que

|an| ⩽ ε ∀n ⩾ N .

Pour ce faire, remarquons que la condition |an| ⩽ ε est en fait équivalente à 1
n
⩽ ε, et comme

cette dernière est équivalente à n ⩾ 1
ε
. Pour l’entier N , on peut prendre n’importe quel entier plus

grand ou égal à 1
ε
. On peut par exemple prendre (rappelons que ⌊x⌋ :=partie entière de x) :

N :=
⌊1
ε

⌋
+ 1 .

On a ainsi trouvé un entier N tel que n ⩾ N implique |an| ⩽ ε. ⋄

Informel 3.19. On voit, dans ce dernier exemple, comme le N cherché dépend de ε ! Car en géné-
ral, plus ε > 0 est petit, plus il faut augmenter n pour faire rentrer an dans l’intervalle [−ε, ε].
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3.2. Limite : an → L

3.2.2 Tendre vers L ∈ R
(ici, Video: v_suites_tendent_vers_L.mp4)

La définition de “tendre vers L” est seulement une adaptation de la définition de “tendre vers
zéro” : pour que an tende vers L, il faut que la suite a′n := an − L tende vers zéro.

Définition 3.20. Soit L ∈ R. On dit qu’une suite (an) tend vers L (lorsque n → ∞) si pour tout
ε > 0 il existe un entier positif N tel que |an − L| ⩽ ε pour tout n ⩾ N , c’est -à-dire tel que

an ∈ [L− ε, L+ ε] ∀n ⩾ N .

On dira alors que L est la limite de la suite (an), et on écrira lim
n→∞

an = L ou simplement an → L.

Lorsqu’il existe un L ∈ R tel que (an) tend vers L, on dit que la suite converge ; si elle ne converge
pas, on dit qu’elle diverge.
Exemple 3.21. Considérons la suite (an)n⩾0 définie par

an =
3n+ 2

2n+ 1
.

Montrons, en utilisant la définition de limite donnée plus haut, que

lim
n→∞

an =
3

2
.

Fixons donc un ε > 0, et vérifions que l’on peut trouver un entier N tel que∣∣∣∣an − 3

2

∣∣∣∣ ⩽ ε ∀n ⩾ N .

D’abord, écrivons explicitement la différence∣∣∣∣an − 3

2

∣∣∣∣ = ∣∣∣3n+ 2

2n+ 1
− 3

2

∣∣∣ = 1

2(2n+ 1)
.

On voit que cette dernière expression peut être rendue arbitrairement petite en prenant n suffi-
samment grand. Plus précisément : fixons un ε > 0. Une simple manipulation montre que

1

2(2n+ 1)
⩽ ε ⇐⇒ n ⩾

1

2

( 1

2ε
− 1
)
.

Pour N , il suffit donc de prendre n’importe quel entier plus grand ou égal à 1
2
( 1
2ε

− 1). Pour être
tout à fait précis, définissons (rappel : ⌊x⌋ =valeur entière de x)

N :=
⌊1
2

( 1

2ε
− 1
)⌋

+ 1 .
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3.3. Propriétés de la limite

Par cette définition de N , n ⩾ N implique que |an − 3
2
| ⩽ ε.

On a donc bien montré que (an) est convergente, et que sa limite vaut 3
2
.

Remarquons que peu importe comment il est choisi, N devient de plus en plus grand à mesure
que ε > 0 devient plus petit. ⋄
Exemple 3.22. Considérons la suite (an)n⩾1 définie par

an = (−1)n .

Comme cette suite ne prend que les valeurs +1 (lorsque n est pair) et −1 (lorsque n est impair), elle
est nécessairement divergente. En effet, pour n’importe quel L ∈ R, si ε > 0 est pris suffisamment
petit (en fait : si 0 < ε < 1

2
), alors il existe forcément une infinité d’indices n tels que an ̸∈ [L −

ε, L+ ε]. ⋄

3.3 Propriétés de la limite

(ici, Video: v_suites_proprietes.mp4)

Le calcul de limites sera grandement facilité par l’utilisation des propriétés générales satisfaites par
les suites convergentes, que nous commençons à décrire maintenant.

La première propriété dit qu’une suite ne peut pas tendre vers deux limites différentes :

Lemme 11. Si une suite est convergente, alors sa limite est unique.

Preuve: Supposons, par l’absurde, que an → L et an → L′, avec L ̸= L′. Si on suppose par exemple que
L < L′, alors on peut toujours prendre un ε > 0 suffisamment petit, de manière à ce que les intervalles
[L− ε, L+ ε] et [L′ − ε, L′ + ε] soient disjoints :

Plus concrètement, on peut garantir que ces intervalles sont disjoints en prenant par exemple

ε :=
L′ − L

3
.

Maintenant,

⋆ Comme an → L, il existe N tel que an ∈ [L− ε, L+ ε] pour tout n ⩾ N .

⋆ Comme an → L′, il existe N ′ tel que an ∈ [L′ − ε, L′ + ε] pour tout n ⩾ N ′.
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3.3. Propriétés de la limite

Cela implique que pour n ⩾ max{N,N ′}, an doit être dans les deux intervalles en même temps, une
contradiction puisque ces intervalles sont disjoints.

La deuxième est que les valeurs des termes d’une suite convergente ne peuvent pas devenir trop
grands :

Lemme 12. Si une suite converge, alors elle est bornée.

Preuve: Soit (an)n⩾1 une suite convergente. Nommons L sa limite. La convergence de an vers L implique
en particulier que l’on peut fixer, par exemple, ε := 1, et considérer l’entier N tel que an ∈ [L − 1, L + 1]
pour tout n ⩾ N :

En particulier on a, pour tout n ⩾ N , que L− 1 ⩽ an ⩽ L+ 1. Si on définit maintenant

M := max{a1, a2, . . . , aN−1, L+ 1}
m := min{a1, a2, . . . , aN−1, L− 1} ,

alors on a bien garanti que m ⩽ an ⩽M pour tout n ⩾ 1.

Lemme 13. Si an → L, alors |an| → |L|.

Preuve: L’inégalité triangulaire permet d’écrire

|an| = |(an − L) + L| ⩽ |an − L|+ |L| ,

ainsi que
|L| = |(L− an) + an| ⩽ |an − L|+ |an| ,

En combinant ces inégalités, on obtient

−|an − L| ⩽ |an| − |L| ⩽ |an − L| ,

qui est équivalente à ∣∣|an| − |L|
∣∣ ⩽ |an − L| .

Soit maintenant ε > 0. Puisque an → L, il existe N tel que |an − L| ⩽ ε pour tout n ⩾ N . Par l’inégalité
ci-dessus, ceci implique aussi que ||an| − |L|| ⩽ ε pour tout n ⩾ N .

Remarque 3.23. Remarquons que la suite des valeurs absolues |an| peut avoir une limite, même
si an est divergente. C’est par exemple ce qui se passe avec la suite an = (−1)n. Ceci implique que
la réciproque du lemme précédent est fausse en général. ⋄

Finalement, listons quelques propriétés qui sont utilisées constamment dans les calculs de limites.
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3.3. Propriétés de la limite

Lemme 14. (Opérations sur les limites) Soient (an) et (bn) deux suites convergentes : an → L1, bn → L2.
Alors

1) Limite de la somme :

lim
n→∞

(an + bn) =
(
lim
n→∞

an
)
+
(
lim
n→∞

bn
)
= L1 + L2 .

2) Limite du produit :
lim
n→∞

(an · bn) =
(
lim
n→∞

an
)
·
(
lim
n→∞

bn
)
= L1L2 .

3) Limite du quotient : si L2 ̸= 0, alors

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
=
L1

L2

.

4) Si an ⩽ bn pour tout n suffisamment grand, alors L1 ⩽ L2.

Remarque 3.24. Dans la dernière propriété, les “⩽” ne peuvent pas être remplacés par des “<”. En
effet, on peut très bien avoir deux suites convergentes telles que an < bn pour tout n suffisamment
grand, mais telles que limn→∞ an = limn→∞ bn. Comme exemple simple, on peut considérer les
suites an = − 1

n
et bn = 1

n
. ⋄

Preuve: 1. Par l’inégalité triangulaire,

|(an + bn)− (L1 + L2)| = |(an − L1) + (bn − L2)|
⩽ |an − L1|+ |bn − L2| .

Fixons un ε > 0, et posons ε′ := ε/2. Comme an → L1, il existe Na tel que |an − L1| ⩽ ε′ pour tout
n ⩾ Na. Comme bn → L2, il existe Nb tel que |bn − L2| ⩽ ε′ pour tout n ⩾ Nb. On a donc, pour tout
n ⩾ N := max{Na, Nb},

|(an + bn)− (L1 + L2)| ⩽ |an − L1|+ |bn − L2| ⩽ 2ε′ = ε .

2. Comme an converge, elle est bornée : il existe C > 0 telle que |an| ⩽ C pour tout n. On peut donc écrire

|anbn − L1L2| = |anbn − anL2 + anL2 − L1L2|
⩽ |an||bn − L2|+ |L2||an − L1|
⩽ C|bn − L2|+ |L2||an − L1| .

Soit ε > 0. Soit Na tel que |an − L1| ⩽ ε
2|L2| pour tout n ⩾ Na (serait dommage que L2 = 0 !), et soit Nb tel

que |bn − L2| ⩽ ε
2C pour tout n ⩾ Nb. On a alors que pour tout n ⩾ N := max{Na, Nb},

|anbn − L1L2| ⩽ C|bn − L2|+ |L2||an − L1|

⩽ C
ε

2C
+ |L2|

ε

2|L2|
= ε .

3. Il suffit de montrer la propriété dans le cas où an = 1 pour tout n, c’est-à-dire de montrer que bn → L2 ̸= 0
implique que

1

bn
→ 1

L2
.

(En effet, on utilise alors la propriété du produit démontrée plus haut, pour conclure dans le cas général que
an
bn

= an · 1
bn

→ L1 · 1
L2

.) Pour ce faire, commençons par utiliser le fait que bn → L2 implique |bn| → |L2| > 0 :
donc il existe N0 tel que |bn| ⩾ |L2|/2 > 0 pour tout n ⩾ N0. Ensuite, on peut écrire, pour tout n ⩾ N0, que∣∣∣∣ 1bn − 1

L2

∣∣∣∣ = |bn − L2|
|L2| · |bn|

⩽
2

|L2|2
|bn − L2| .
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3.4. Le Théorème des deux gendarmes

Fixons maintenant ε > 0, et posons ε′ = |L2|2ε
2 . Comme bn → L2, on sait qu’il existe N ′ tel que |bn−L2| ⩽ ε′

pour tout n ⩾ N ′. Si on pose N = max{N0, N
′}, on a aussi, pour tout n ⩾ N ,∣∣∣∣ 1bn − 1

L2

∣∣∣∣ ⩽ 2

|L2|2
|bn − L2| ⩽

2

|L2|2
ε′ = ε .

On a donc montré que 1/bn → 1/L2.

4. La preuve de la dernière propriété est laissée en exercice.

Exemple 3.25. Considérons la suite (xn) définie ainsi :

xn =
6n+ 4

8n3 + 4n2

La convergence de cette suite peut paraître a priori difficile à étudier, mais remarquons qu’on peut
l’écrire comme un produit :

xn =
1

2

3n+ 2

2n+ 1

1

n2
=

1

2
anbn ,

où an = 3n+2
2n+1

, bn = 1
n2 . On a montré précédemment que an → 3

2
, et on montre facilement que

bn → 0 ; en effet, si ε > 0, alors |bn| ⩽ ε dès que n ⩾ N , où N est un entier quelconque plus
grand que 1/

√
ε. On peut maintenant utiliser la propriété ci-dessus pour des limites de produits,

et conclure que

lim
n→∞

xn = lim
n→∞

1

2
anbn =

1

2

(
lim
n→∞

an
)(

lim
n→∞

bn
)
=

1

2
· 3
2
· 0 = 0 .

On a donc montré que xn converge et que sa limite est égale à zéro. Il est important d’apprécier
le fait que si on avait voulu le montrer uniquement à partir de la définition de limite, il faudrait
montrer que pour tout ε > 0, il existe un N tel que∣∣∣∣ 6n+ 4

8n3 + 4n2

∣∣∣∣ ⩽ ε , ∀n ⩾ N .

Partir à la recherche de ce N est possible, mais représente une tâche considérablement plus com-
pliquée que la simple utilisation de la propriété pour la limite d’un produit. ⋄

3.4 Le Théorème des deux gendarmes

(ici, Video: v_suites_gendarmes.mp4)

Théorème 3.26. Soit (xn) une suite. Soient (an), (bn) deux suites telles que

1) an ⩽ xn ⩽ bn pour tout n suffisamment grand,

2) lim
n→∞

an = lim
n→∞

bn = L.

Alors (xn) converge, et sa limite vaut L :
lim
n→∞

xn = L .

Preuve: Soit N0 un entier tel que an ⩽ xn ⩽ bn pour tout n ⩾ N0.

Fixons ε > 0.

⋆ Puisque an → L, il existe Na tel que an ∈ [L− ε, L+ ε] pour tout n ⩾ Na.

⋆ Puisque bn → L, il existe Nb tel que bn ∈ [L− ε, L+ ε] pour tout n ⩾ Nb.
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3.4. Le Théorème des deux gendarmes

Définissons l’entier
N := max{N0, Na, Nb} .

Si n ⩾ N , alors on a en particulier que an ⩾ L− ε et bn ⩽ L+ ε, ce qui implique

L− ε ⩽ an ⩽ xn ⩽ bn ⩽ L+ ε .

De ces dernières inégalités, on tire que |xn − L| ⩽ ε.

On a donc bien montré que pour tout ε > 0 il existe un entier N tel que |xn − L| ⩽ ε pour tout n ⩾ N . Ceci
signifie que xn → L.

Exemple 3.27. Considérons la suite (xn)n⩾1, définie par

xn =
2 + cos(19n2 + n7)

n
.

La partie contenant cos(· · · ) étant compliquée, on peut utiliser le fait qu’elle est bornée : −1 ⩽
cos(· · · ) ⩽ +1, ce qui permet d’écrire

1

n︸︷︷︸
=an

=
2− 1

n
⩽ xn ⩽

2 + 1

n
=

3

n︸︷︷︸
=bn

Mais, puisque limn→∞ an = limn→∞
1
n
= 0 et limn→∞ bn = 3 limn→∞

1
n
= 0, le théorème des deux

gendarmes garantit que limn→∞ xn = 0. ⋄

Informel 3.28. Une bonne utilisation du théorème, pour montrer qu’une suite (xn) converge
et trouver sa limite, nécessite de trouver deux “gendarmes” (an) et (bn) qui non seulement en-
cadrent (xn), mais qui possèdent en plus la même limite ! Dans des situations simples, comme
dans l’exemple précédent, on obtient souvent des gendarmes efficaces en majorant/minorant cer-
taines parties de xn qui ne sont pas essentielles dans le comportement pour des indices n grands.
Mais parfois, trouver des gendarmes qui ont la même limite peut s’avérer plus difficile !

Exemple 3.29. Considérons la suite (xn)n⩾1, définie par

xn =
2n

n!
, n ⩾ 1 .

Comme le numérateur est un produit de n fois le même nombre “2”, alors que le dénominateur
est un produit de n nombres dont presque tous sont plus grands que 2, le dénominateur doit croître
beaucoup plus vite que le numérateur. Ceci suggère que xn → 0, ce que l’on va essayer de montrer
à l’aide du théorème des deux gendarmes.
Comme xn ⩾ 0, il suffit de trouver une suite bn telle que

⋆ 0 ⩽ xn ⩽ bn, et

⋆ bn → 0.

Or si on écrit explicitement, pour tout n ⩾ 3

xn =
2 · 2 · 2 · · · 2

n(n− 1)(n− 2) · · · 3 · 2 · · · 1

=
2

n
· 2

n− 1︸ ︷︷ ︸
⩽1

· 2

n− 2︸ ︷︷ ︸
⩽1

· · · 2

3︸︷︷︸
⩽1

· 2

2︸︷︷︸
=1

·2
1

⩽
4

n
=: bn .

Puisque bn → 0, ceci implique bien que xn → 0. ⋄
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3.5. Les suites monotones et bornées

Voyons ensuite une conséquence très utile du théorème des deux gendarmes :

Corollaire 8. Si (xn) est bornée et si yn → 0, alors xnyn → 0.

Preuve: Comme (xn) est bornée, il existe C > 0 telle que −C ⩽ xn ⩽ C pour tout n. On a donc 0 ⩽ |xnyn| =
|xn||yn| ⩽ C|yn|, ce qui donne

−C|yn| ⩽ xnyn ⩽ C|yn| .

Puisque yn → 0, ceci implique ±C|yn| → 0. Par le Théorème des deux gendarmes, on conclut que |xnyn| →
0, ce qui implique xnyn → 0.

3.5 Les suites monotones et bornées

(ici, Video: v_suites_monotones_bornees_convergent.mp4)

On a vu qu’une suite convergente est forcément bornée. Mais le contraire n’est pas vrai : une suite
bornée ne converge pas forcément.
Exemple 3.30. La suite an = (−1)n ne converge pas, mais elle est bornée, puisque |an| = 1, ce qui
implique −1 ⩽ an ⩽ 1 pour tout n. ⋄

Par contre, si une suite est bornée et monotone, alors elle converge :

Théorème 3.31. Soit (an) une suite.

1) Si (an) est croissante et majorée, elle converge.

2) Si (an) est décroissante et minorée, elle converge.

Preuve: Soit (an) une suite croissante et majorée. Considérons l’ensemble A ⊂ R défini comme étant l’en-
semble de tous les points de la suite :

A := {a1, a2, a3, . . . } .

Puisque la suite est bornée, A est majoré ; on peut donc considérer le réel L défini par

L := supA .

Nous allons montrer que an → L.

Par définition, le supremum est un majorant, et donc an ⩽ L pour tout n. De plus, comme le supremum
est le plus petit majorant, on a que pour tout ε > 0, il existe n∗ tel que L − ε ⩽ an∗ . Or comme la suite est
croissante, on a

L− ε ⩽ an∗ ⩽ an∗+1 ⩽ an∗+2 ⩽ · · · ⩽ L ,

ce qui implique |an − L| ⩽ ε pour tout n ⩾ n∗.

On a ainsi montré que pour tout ε > 0, on a |an −L| ⩽ ε pour tout n suffisamment grand. Ceci montre que
an → L.

(Dans le deuxième cas, lorsque la suite est décroissante et minorée, on adapte cet argument après avoir
défini L := inf A.)
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3.5. Les suites monotones et bornées

Si le résultat peut paraître intuitif, la preuve a montré qu’il repose entièrement sur l’existence d’un
supremum pour les ensembles majorés de R.

Le théorème ci-dessus garantit que si une suite est monotone et bornée, alors elle possède une
limite L, qui est soit un supremum (si la suite est croissante et majorée), soit un infimum (si la
suite est décroissante et minorée). Parfois, on peut calculer cette limite L explicitement :
Exemple 3.32. Considérons la suite (an)n⩾0 définie par

an =
n

n+ 1
.

Nous avons montré précédemment que cette suite est strictement croissante. Or elle est aussi
majorée, puisque n < n+ 1 implique

an =
n

n+ 1
<
n+ 1

n+ 1
= 1 .

Le théorème ci-dessus garantit donc qu’elle converge, et que sa limite est égale à

L = sup{a0, a1, a2, . . . } .

On peut vérifier (exercice !) que L = 1. ⋄

L’exemple suivant présente un cas dans lequel le théorème permet de montrer qu’une certaine
suite converge, mais sans pour autant donner la valeur de la limite.
Exemple 3.33. Soit (bn) la suite définie ainsi :

b1 :=
1

12

b2 :=
1

12
+

1

22

b3 :=
1

12
+

1

22
+

1

32
...

bn :=
1

12
+

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2

bn+1 :=
1

12
+

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
+

1

(n+ 1)2

...

Cette suite est croissante puisque bn+1 = bn +
1

(n+1)2
> bn. Pour montrer qu’elle est bornée, remar-

quons que pour tout k ⩾ 2,

1

k2
=

1

k · k
<

1

k(k − 1)
=

1

k − 1
− 1

k
.

En utilisant cette inégalité pour k = 2, 3, . . . , n, on obtient une borne supérieure dans laquelle
beaucoup de termes se téléscopent :

bn =
1

12
+

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2

< 1
12

+
(
1
1
−1

2

)
+
(
1
2︸ ︷︷ ︸

=0

−1
3

)
+
(
1
3︸ ︷︷ ︸

=0

−1
4

)
+
(
1
4︸ ︷︷ ︸

=0

− · · ·− 1
n−1

)
+
(

1
n−1︸ ︷︷ ︸

=0

− 1
n

)
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3.6. Suites qui tendent vers l’infini

On a donc que

bn <
1

12
+

1

1
− 1

n
= 2− 1

n
< 2 .

On a ainsi montré que (bn) est majorée par M = 2, et comme elle est aussi croissante, elle
converge : il existe L ∈ R tel que

lim
n→∞

bn = L .

Puisque 1 ⩽ bn < 2, on a aussi que 1 ⩽ L ⩽ 2. ⋄

Informel 3.34. Euler a montré en 1734 que cette limite vaut

L =
1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
= 1.664934 . . . .

3.6 Suites qui tendent vers l’infini

(ici, Video: v_suites_tendent_vers_infini_2.mp4)

Dans les sections précédentes, on a surtout considéré les suites convergentes, c’est-à-dire celles qui
tendent vers une limite finie lorsque n→ ∞.

On n’étudiera pas systématiquement les suites divergentes, dont les comportements peuvent être
aussi compliqués que variés, mais nous introduirons quand-même quelques outils qui permet-
tront de décrire certains de ces comportements divergents.

Par exemple, une classe importante de suites divergentes est celle des suites qui tendent vers l’in-
fini.

Définition 3.35. Soit (an) une suite réelle.

1) On dit que (an) tend vers +∞ (lorsque n→ ∞) si pour tout M > 0 il existe un entier positif
N0 (qui dépend en général de M ) tel que

an ⩾M ∀n ⩾ N0 .

On notera, formellement, lim
n→∞

an = +∞, ou simplement an → +∞.

2) On dit que (an) tend vers −∞ (lorsque n→ ∞) si pour tout M < 0 il existe un entier positif
N0 (qui dépend en général de M ) tel que

an ⩽M ∀n ⩾ N0 .

On notera (formellement) lim
n→∞

an = −∞, ou simplement an → −∞.

Donc an tend vers +∞ si elle dépasse et reste au-dessus de n’importe quel seuil M > 0 (sous-
entendu : arbitrairement grand) lorsque son indice n est pris suffisamment grand.

Sur l’animation suivante, fixer une valeur du seuil M > 0, puis chercher un N tel que an ⩾ M
pour tout n ⩾ N :
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3.6. Suites qui tendent vers l’infini

Exemple 3.36. Montrons que la suite (an) définie par

an =
2n− 5

7

tend vers +∞. Pour cela, fixons un seuil arbitraire M > 0, et remarquons que

an ⩾M ⇔ 2n− 5

7
⩾M ⇔ n ⩾

7M + 5

2
.

Soit donc N := ⌊7M+5
2

⌋+ 1. Si n ⩾ N , alors n ⩾ 7M+5
2

et donc an ⩾M . Comme on peut trouver un
tel N pour tout seuil M > 0, ceci montre bien que an → ∞. ⋄
Exemple 3.37. Considérons ensuite

an =
n2

n+ 1
,

et montrons que an → ∞. Pour un seuil M > 0, on a

an ⩾M ⇔ n2 −Mn−M ⩾ 0

Le polynôme P (x) = x2 −Mx−M possède deux racines,

x± =
M ±

√
M2 + 4M

2
,

et il est positif partout en dehors de l’intervalle [x−, x+]. En définissant N := ⌊x+⌋ + 1, on a bien
an ⩾M dès que n ⩾ N . ⋄

3.6.1 Propriétés des suites qui tendent vers l’infini

Tout comme les suites convergentes, celles qui tendent vers l’infini obéissent à certaines proprié-
tés.

Théorème 3.38. Soient (an) et (bn) deux suites. Si an → +∞,

1) alors 1
an

→ 0.

2) et si bn → +∞, alors an + bn → +∞ et anbn → +∞.

3) et si bn est bornée, alors an + bn → +∞ et bn
an

→ 0.

4) et s’il existe δ > 0 tel que bn ⩾ δ pour tout n suffisamment grand, alors anbn → +∞. (En particulier,
si bn → L, avec L > 0, alors anbn → +∞.)

5) et si bn ⩾ an pour tout n suffisamment grand, alors bn → +∞.

(ici, Video: v_suites_tendent_vers_infini_preuves.mp4)
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3.7. Comportements polynômiaux, logarithmiques, exponentiels

Exemple 3.39. Considérons la suite

xn = n3 − 7 sin(n
2
) cos(

√
n) ,

que l’on peut écrire comme xn = an + bn, où

an = n3 , bn = −7 sin(n
2
) cos(

√
n) .

On voit que an → ∞. On ne sait pas grand chose sur le signe de bn, mais on sait qu’elle est bornée
puisque

|bn| =
∣∣−7 sin(n

2
) cos(

√
n)
∣∣ ⩽ 7 ,

et donc
lim
n→∞

xn = lim
n→∞

(an + bn) = +∞ .

⋄
Exemple 3.40. Considérons

xn =
√
n(2 + cos(n5)) ,

que l’on peut écrire comme xn = anbn, où

an =
√
n , bn = 2 + cos(n5) .

On a an → ∞, mais bn n’a visiblement pas de limite. Pourtant, on peut remarquer que cos(n5) ⩾
−1, et donc

bn = 2 + cos(n5) ⩾ 2− 1 = 1 =: δ > 0 .

On a donc
lim
n→∞

xn = lim
n→∞

anbn = +∞ .

⋄

3.7 Comportements polynômiaux, logarithmiques, exponentiels

(ici, Video: v_suites_comportement_polynexplog.mp4)

3.7.1 Suites et fonctions élémentaires

Dans cette section, on compare différents types de comportements à l’infini, à savoir

⋆ les exponentielles de base r > 1,
en = rn

⋆ les puissances positives α > 0,
pn = nα

⋆ et les logarithmes de base b > 1 :
ℓn = logb(n) .

Toutes ces suites tendent vers l’infini lorsque n→ ∞ :

lim
n→∞

en = +∞ , lim
n→∞

pn = +∞ , lim
n→∞

ℓn = +∞ .

Pourtant, elles ne tendent pas vers l’infini à l’infini : certaines tendent vers l’infini plus vite que
d’autres.
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3.7. Comportements polynômiaux, logarithmiques, exponentiels

Il est donc naturel d’établir rigoureusement une hiérarchie entre ces trois comportements :

Théorème 3.41. (Comparaison des divergences lorsque n→ ∞)

1) Un exponentielle tend vers l’infini plus vite que n’importe quelle puissance : pour toute base
r > 1 et toute puissance α > 0,

lim
n→∞

nα

rn
= 0 .

2) Une puissance tend vers l’infini plus vite que n’importe quelle puissance de logarithme : pour
toute base b > 1, et tous α, β > 0,

lim
n→∞

(
logb(n)

)β
nα

= 0 .

Preuve: 1. Remarquons d’abord que si on sait traiter les cas où α est entier, alors on sait aussi traiter le cas

d’un α quelconque. (En effet, pour tout n ⩾ 1, n
α

rn ⩽ n⌊α⌋+1

rn , donc si n
α′

rn → 0, avec α′ = ⌊α⌋ + 1 ⩾ α, alors
nα

rn → 0 aussi.)

Pour simplifier, considérons le cas α = r = 2. On aimerait donc montrer que

n2

2n
→ 0 .

L’idée est d’utiliser la formule du binôme pour montrer que le dénominateur est plus grand qu’une puis-
sance supérieure à n2. En effet, la formule du binôme avec x = y = 1 donne

2n = (1 + 1)n =

n∑
k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
.

Or comme tout les termes de cette dernière somme sont positifs, la somme est plus grande que n’importe
lequel de ces termes. Dans notre cas, il suffit de ne garder que le terme correspondant à k = 3

n∑
k=0

(
n

k

)
⩾

(
n

3

)
=

n!

(n− 3)!3!
=
n(n− 1)(n− 2)

6
.

Ceci implique que

0 ⩽
n2

2n
⩽

n2

n(n−1)(n−2)
6

=
6n2

n(n− 1)(n− 2)
.
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3.8. Indéterminations

On voit que dans ce dernier quotient, le numérateur se comporte en n2, alors que le dénominateur se
comporte en n3, ce qui implique que sa limite est nulle. Plus précisément,

lim
n→∞

6n2

n(n− 1)(n− 2)
= lim

n→∞

1

n︸︷︷︸
→0

6

(1− 1
n)(1−

2
n)︸ ︷︷ ︸

→6

= 0 .

Par le théorème des deux gendarmes, on conclut donc que n2

2n → 0.

Dans le cas général, pour une exponentielle de base r > 1 et une puissance entière α quelconque, on peut
adapter la preuve ci-dessus. En effet, en écrivant r = 1 + λ, où λ > 0, et en utilisant à nouveau la formule
du binôme, on peut minorer

rn = (1 + λ)n ⩾

(
n

α+ 1

)
λα+1 .

Le reste de la preuve s’adapte facilement (voir la vidéo ci-dessus), et mène à nα

rn → 0.

Une preuve semblable de cette première affirmation, même si ça ne se voit pas tout de suite, peut se trouver
ici (lien web).

2. On peut démontrer la deuxième affirmation à l’aide de la première.

Informel 3.42. Le théorème implique par exemple que

lim
n→∞

(log n)1000

n0.0001
= 0 .

Pourtant, la petitesse du quotient est difficile à observer (sur l’animation ci-dessus par exemple),
dans le sens où il faut que n soit vraiment très grand pour que ce quotient commence à se rappro-
cher de zéro...

On reviendra sur les limites étudiées ci-dessus, lorsque nous étudierons la Règle de Bernoulli-
l’Hôpital (lien vers la section m_derivee_Bernoulli_lHopital).

3.8 Indéterminations

On a pour l’instant considéré deux types de limites :

⋆ celles qui convergent vers une limite finie : lim
n→∞

xn = L,

⋆ celles qui tendent vers l’infini : lim
n→∞

xn = ±∞.

Or les limites importantes de l’analyse, celles qui permettent de faire avancer le développement
du calcul différentiel et intégral, sont toutes des limites qui impliquent une forme ou une autre
d’indétermination.

Une limite représente une indétermination lorsqu’elle fait intervenir une combinaison de gran-
deurs qui est telle qu’on ne peut pas déterminer sa valeur directement à l’aide d’une des pro-
priétés de base des limites vues précédemment . Plus précisément, une indétermination apparaît
lorsque une suite est composée d’autres suites, présentant des comportement du type “tend vers
zéro” ou “tend vers l’infini”.

On décrit les principales indéterminations en considérant une suite xn formée à partir de deux
autres suites, que l’on notera an et bn. On suppose les comportements de an et bn connus lorsque
n→ ∞.
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3.8. Indéterminations

Nous ne traiterons pas les indéterminations de façon générale puisque justement, leur présence
indique qu’une étude au cas par cas est nécessaire. Nous allons donc discuter certaines de ces in-
déterminations, et présenter quelques techniques qui permettent de les résoudre, sur des exemples.
Notons que ces techniques ne sont pas spécifiques au cas n → ∞ : toutes seront utiles plus tard,
dans d’autres types de limites (comme x→ x0).

3.8.1 Indéterminations du type “∞
∞”

Exemple 3.43. Nous avons déjà rencontré (lien vers la section m_suites_limites_infinies)
la suite

xn =
n2

n+ 1
,

qui est du type “∞
∞” puisque n2 → +∞ et n + 1 → +∞. Nous avions également montré qu’elle

tend vers +∞, l’intuition derrière ce fait étant la présence de l’exposant “2” fait que le numérateur
l’emporte dans la limite n→ ∞.

Une autre façon de traiter ce quotient est de l’écrire comme un produit :

n2

n+ 1
= n︸︷︷︸

=an

· n

n+ 1︸ ︷︷ ︸
=bn

On a alors an → +∞ et bn → 1, ce qui implique (par une propriété énoncée et démontrée ici (lien
vers la section m_suites_limites_infinies)) que

n2

n+ 1
= anbn → +∞ .

Ainsi, en récrivant notre suite, on a pu la mettre sous une forme qui permet de déduire son com-
portement à l’aide d’une propriétés de base des suites. ⋄
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3.8. Indéterminations

Informel 3.44. Lorsqu’on est en présence d’un quotient an
bn

dans lequel an et bn sont les deux
grands, on essaiera d’extraire ce qui est à l’origine de cette grandeur, en mettant un terme dominant
en évidence. On pourra alors faire des simplifications dans la fraction an

bn
, et éventuellement faire

disparaître l’indétermination.

Exemple 3.45. Considérons

lim
n→∞

3n3 − 17n+ 1

5n3 + sin(n)
,

qui est effectivement une indétermination de la forme “∞
∞”, puisque

⋆ an = 3n3 − 17n+ 1 → +∞ (polynôme de degré 3, dont le coefficient principal est 3 > 0),
⋆ bn = 5n3 + sin(n) → +∞ (5n3 → ∞ et sin(n) est bornée).

Ce que l’on peut faire ici est extraire les termes dominants dans an et bn, qui sont les termes
contenant la puissance n3 :

an
bn

=
3n3 − 17n+ 1

5n3 + sin(n)
=
n3(3− 17

n2 +
1
n3 )

n3(5 + sin(n)
n3 )

=
3− 17

n2 +
1
n3

5 + sin(n)
n3

=
a′n
b′n

En simplifiant par n3 on a obtenu un nouveau quotient qui dans la limite n → ∞ n’est plus
indéterminé. En effet, a′n → 3 et b′n → 5, et donc

lim
n→∞

an
bn

= lim
n→∞

a′n
b′n

=
3

5
.

⋄
Exemple 3.46. Les comparaisons des comportements logarithmiques, polynomiaux et exponen-
tiels (lien vers la section m_suites_hierarchie), ont consisté à résoudre les indéterminations
“∞
∞” suivantes :

xn =

(
logr(n)

)β
nα

→ 0 , xn =
nα

rn
→ 0 .

Remarquons que ces limites ont requis une analyse plus fine, puisque numérateur et dénomina-
teur sont de nature différente (on n’a pas pu simplement extraire de “terme dominant”). ⋄

3.8.2 Indéterminations du type “∞−∞”

(ici, Video: v_suites_tendent_vers_infini_conjugue.mp4)

Souvent, une suite est définie par une différence de deux nombres qui deviennent de plus en plus
grands à mesure que n augmente. Or la différence de deux nombres grands peut, a priori, avoir
n’importe quel type de comportement.
Exemple 3.47. Considérons

lim
n→∞

(
n3 − 5n2

)
,

dans laquelle an = n3 → +∞ et bn = 5n2 → ∞. Comme an tend vers l’infini plus vite que bn, dû
au fait qu’il contient un terme de degré 3 > 2, on a avantage à mettre n3 en évidence et obtenir un
produit,

an − bn = n3 − 5n2 = n3︸︷︷︸
a′n

(
1− 5

n

)
︸ ︷︷ ︸

b′n

Maintenant, on a toujours a′n → ∞, mais puisque b′n = 1− 5
n
→ 1 ̸= 0, leur produit tend vers +∞.

On a donc
lim
n→∞

anbn = lim
n→∞

a′nb
′
n = +∞ .

⋄
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L’identité élémentaire
(a− b)(a+ b) = a2 − b2

est souvent utile lorsqu’on a affaire à une différence a− b, si on la formule comme suit :

a− b =
(a− b)(a+ b)

(a+ b)
=

1

a+ b
(a2 − b2)

Ici, on a multiplié et divisé par le conjugué de a − b. Ainsi, à la différence “a − b” se substitue la
différence “a2 − b2”, qui est parfois plus facile à traiter.

Cette approche est particulièrement efficace lorsqu’on a des différences de racines :
Exemple 3.48. Considérons

lim
n→∞

{√
n+ 1−

√
n
}
,

qui est bien du type “∞−∞”. En multipliant et divisant par le conjugué,

√
n+ 1−

√
n =

(√
n+ 1−

√
n
)√n+ 1 +

√
n√

n+ 1 +
√
n

=
(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
.

Ce quotient n’est plus indéterminé :

lim
n→∞

{√
n+ 1−

√
n
}
= lim

n→∞

1√
n+ 1 +

√
n
= 0 .

⋄

Parfois, on pourra (même si c’est assez rare) résoudre une indétermination “∞−∞”, de la forme
limn→∞(an − bn), en extrayant explicitement de an et de bn la même partie divergente :
Exemple 3.49. Considérons le cas “∞−∞” suivant :

lim
n→∞

(
log(e

√
n + 2)− log(e

√
n + 1)

)
Ici, on peut remarquer qu’en écrivant

an = log(e
√
n + 2) = log(e

√
n(1 + 2e−

√
n)) =

√
n+ log(1 + 2e−

√
n) ,

bn = log(e
√
n + 1) = log(e

√
n(1 + e−

√
n)) =

√
n+ log(1 + e−

√
n) ,

ce qui montre que an et bn contiennent tous deux un “
√
n”, qui tend vers l’infini, et qui disparaît

lorsqu’on fait la différence :

lim
n→∞

(an − bn) = lim
n→∞

(
log(1 + 2e−

√
n)− log(1 + e−

√
n)
)

= log(1)− log(1)

= 0 .

C’est donc un cas d’une indétermination “∞−∞” dans laquelle on peut montrer que les infinis
se “compensent exactement”. ⋄
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3.8.3 Indéterminations du type “0
0”

Nous reviendrons au indéterminations “0
0
”, puisqu’elles sont au coeur du problème de la dériva-

tion, un outil central de l’analyse.

Pour l’instant, donnons déjà une limite classique “0
0
” :

Théorème 3.50. Soit (xn) une suite représentant des mesures d’angles en radians. Si xn ̸= 0 pour tout n,
et si xn → 0, alors

lim
n→∞

sin(xn)

xn
= 1 .

Informel 3.51. Attention, il est important de mentionner que le sinus, dans sin(xn), est calculé en
supposant que l’angle xn est mesuré en radians. Sinon, la limite n’est pas la même!

Preuve: Comme la fonction x 7→ sin(x)
x est paire, on peut supposer que xn > 0 pour tout n.

Puisque xn → 0, on a 0 < xn <
π
2 pour tout n suffisamment grand. Considérons donc un angle sur le cercle

trigonométrique, dont la mesure en radians xn est entre 0 et π2 :

Remarquons que le triangle OAP est inclus dans le secteur circulaire OBP , qui est lui-même inclus dans
le triangle OBM . On a donc

aire(△OAP ) ⩽ aire(secteur OBP ) ⩽ aire(△OBM) .

On explique ici (lien vers la section m_elementaire_trigo) comment calculer l’aire d’un secteur. Ainsi,
en exprimant chacune de ces aires en fonction de xn,

1
2 cos(xn) sin(xn) ⩽

1
2xn1

2 ⩽ 1
2 tan(xn) .

Ce deux inégalités sont équivalentes à

cos(xn)︸ ︷︷ ︸
an

⩽
sin(xn)

xn
⩽

1

cos(xn)︸ ︷︷ ︸
bn

.

Puisque xn → 0, on a an = cos(xn) → 1 et bn → 1
1 = 1. On conclut donc avec le théorème des deux

gendarmes.
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3.8.4 Sur l’équivalence entre les indéterminations

Toutes les indéterminations du tableau présenté plus haut sont équivalentes, dans le sens où on
peut toujours transformer une indétermination en une autre. Voyons les principaux cas.

⋆ Supposons par exemple que la limite de an
bn

soit “∞
∞”. Cela implique que 1

bn
→ 0, et donc en

écrivant an
bn

= an · 1
bn

, la limite devient du type “∞ · 0”.

⋆ Supposons ensuite que la limite de an
bn

soit “∞
∞”. En écrivant

an
bn

= exp
(
log

an
bn

)
= exp

(
log(an)− log(bn)

)
,

on voit que l’on fait apparaître log(an)− log(bn), qui dans la limite est du type “∞−∞”.

⋆ Soit finalement abnn une suite qui dans la limite n → ∞ est du type “1∞”. En écrivant abnn =
exp(bn log(an)), comme an → 1 implique log(an) → 0, bn log(an) est du type “∞ · 0”.

3.9 Série géométrique et applications

(ici, Video: v_suites_serie_geometrique.mp4)

Théorème 3.52. Soit r ∈ R, et, pour tout n ⩾ 1, définissons la suite

sn := 1 + r + r2 + r3 + · · ·+ rn−1 + rn .

Dans la limite n→ ∞,

⋆ sn diverge et sn → +∞ si r ⩾ 1,

⋆ sn → 1
1−r si |r| < 1,

⋆ sn diverge si r ⩽ −1.

Preuve: Si r = 1, alors
sn = 1 + 1 + 12 + 13 + · · ·+ 1n = n+ 1 ,

ce qui implique sn → +∞.

Si r ̸= 1, on a vu (lien vers la section m_elementaire_sommes_produits) que

sn =
1− rn+1

1− r
.

On peut alors considérer séparément les cas :

⋆ r > 1. Dans ce cas, on écrit plutôt

sn =
rn+1 − 1

r − 1
.

Comme r − 1 > 0 et rn+1 → ∞, on a sn → +∞.

⋆ −1 < r < 1. Dans ce cas. |rn| = |r|n → 0 car 0 ⩽ |r| < 1, et donc sn → 1
1−r .

⋆ r = −1. Dans ce cas, sn = 1
2(1− (−1)n+1), et donc ne converge pas.

⋆ r < −1. Dans ce cas, rn = (−|r|)n = (−1)n|r|n, et puisque |r|n → +∞, sn n’a pas de limite lorsque
n→ ∞.

On peut observer le comportement de la suite (sn)n⩾0 en fonction de −1 < r < 1 sur l’anima-
tion suivante. (On peut en particulier voir comme la suite n’est plus monotone pour des valeurs
négatives de r)
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3.9. Série géométrique et applications

Dans le cas |r| < 1, on écrit souvent le résultat sous la forme

1 + r + r2 + r3 + · · · = 1

1− r

La somme infinie, dans le côté gauche, s’appelle la série géométrique, et sa somme est la valeur
du côté droit, à savoir 1

1−r . (On étudiera les séries dans un chapitre ultérieur.)

On peut utiliser la série géométrique pour obtenir des formules utiles pour des sommes infinies
de même nature :
Exemple 3.53. Fixons un |r| < 1, et considérons la somme

1− r + r2 − r3 + r4 − r5 + · · · .

Remarquons que cette dernière peut se récrire

1 + (−r) + (−r)2 + (−r)3 + (−r)4 + (−r)5 + · · · ,

qui n’est autre que la série géométrique de raison −r. Comme | − r| = |r| < 1, cette dernière
converge et sa somme vaut

1− r + r2 − r3 + r4 − r5 + · · · = 1

1− (−r)
=

1

1 + r
.

⋄
Exemple 3.54. Fixons un |r| < 1, et considérons la somme

r + r2 + r3 + r4 + · · · .

On peut récrire cette dernière ainsi :

r + r2 + r3 + r4 + · · · = (1 + r + r2 + r3 + r4 + · · · )− 1

=
1

1− r
− 1

=
r

1− r
.

⋄
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Exemple 3.55. Partons, à l’étape zéro, d’un triangle équilatéral que l’on suppose d’aire égale à
A0 = 1 :

Puis, à l’étape 1, on divise chacun de ses trois côtés en trois parties égales, et on remplace chaque
partie du milieu par un triangle équilatéral. L’objet obtenu après cette première itération (mettre
n = 1 dans l’animation ci-dessus) a un bord constitué de 12 segments. Remarquons que l’aire de
chacun des trois triangles équilatéraux rajoutés vaut 1

9
, et donc après une itération l’aire totale

vaut

A1 = 1 + 3 · 1
9
.

Puis on recommence avec chacun des segments du bord de A1, que l’on divise en trois parties
égales, et dont on remplace la partie du milieu par un triangle équilatéral d’aire (1

9
)2. On obtient

ainsi un objet dont l’aire vaut maintenant

A2 = 1 + 3 · 1
9
+ 3 · 4 · 1

92
.

(Voir aussi l’explication de la vidéo ci-dessus.)

En itérant ce processus à l’infini (diviser à chaque étape les segments du bord en trois parties
égales, remplacer celui du milieu par un triangle équilatéral, etc), on obtient un objet limite appelé
flocon de von Koch (lien web), qui est un objet fractal (lien web). (Attention : dans l’animation,
ne pas tester des n trop grand, cela risque de faire du mal à votre browser !)

Quelle est l’aire totale du flocon, obtenu après avoir fait n→ ∞?

Remarquons qu’à chaque étape, le nombre de segments du bord est multiplié par 4, et qu’à l’étape
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n, l’aire de chacun des petits triangles rajoutés vaut 1
9n

. On a donc

A0 = 1

A1 = 1 + 3 · 1
9

A2 = 1 + 3 · 1
9
+ 3 · 4 · 1

92

A3 = 1 + 3 · 1
9
+ 3 · 4 · 1

92
+ 3 · 4 · 4 · 1

93
...

An = 1 + 3 · 1
9
+ 3 · 4 · 1

92
+ 3 · 4 · 4 · 1

93
+ · · ·+ 3 · 4n−1 · 1

9n
,

que l’on peut récrire plus proprement :

An = 1 +
1

3

{
1 +

4

9
+

42

92
+

43

93
+ . . .

4n−1

9n−1

}
On reconnaît ici une somme géométrique de raison r = 4

9
< 1, qui dans la limite n → ∞ devient

une série géométrique convergente pour laquelle on peut utiliser notre formule :

lim
n→∞

An = 1 +
1

3
· 1

1− 4
9

= 1 +
1

3
· 9
5
=

8

5
.

⋄

3.9.1 Application : existence du nombre e

(ici, Video: v_suites_nombre_e.mp4)

Dans cette section, on étudie la suite

en :=
(
1 +

1

n

)n
.

Dans la limite n → ∞, en mène à une indétermination de la forme “1∞”, et il n’est pas clair, a
priori, de comment se comporte vraiment en.

Informel 3.56. Donnons deux arguments légitimes, mais tous les deux faux, concernant le compor-
tement de en = (1 + 1

n
)n dans la limite n→ ∞.

⋆ On peut penser, que lorsque n est grand, le terme 1
n

devient négligeable, et donc écrire

en ≃ (1 + 0)n = 1 ,

ce qui mène à penser que la limite de en est égale à 1.

⋆ En se rappelant que même s’il est petit, le terme ε = 1
n

est toujours strictement positif, ce qui
mène à penser, puisque 1 + ε > 1, que

en ≃ (1 + ε)n → ∞ .

On va pourtant montrer que le vrai comportement de cette suite ne suit aucun de ces scénarios.
On peut déjà s’en convaincre en testant (lien vers la section m_graphes_suite_reelle) soi-
même, avec xn =CODE>pow(1 + 1/n, n)<CODE...
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Théorème 3.57. Soit (en)n⩾1 la suite définie ci-dessus. Alors

1) (en) est strictement croissante,

2) (en) est bornée : 2 ⩽ en < 3 pour tout n ⩾ 1.

Par conséquent, il existe e ∈ [2, 3] tel que
lim
n→∞

en = e .

Preuve: Pour commencer, utilisons la formule du binôme de Newton (lien vers la section m_recurrence)
pour écrire en sous une forme qui permette de mieux étudier sa dépendance en n :

en =
(
1 +

1

n

)n
= 1 +

n∑
k=1

(
n

k

)
1n−k( 1n)

k

= 1 +

n∑
k=1

n!

k!(n− k)!
( 1n)

k

= 1 +

n∑
k=1

1

k!

n(n− 1)(n− 2) · · · (n− k + 1)

n · n · · ·n

= 1 +

n∑
k=1

1

k!

(
1− 1

n

)
· · ·
(
1− k−1

n

)
On utilise deux fois cette expression.

⋆ Affirmation :(en) est croissante. En utilisant l’expression précédente, pour n+ 1

en+1 = 1 +

n+1∑
k=1

1

k!

(
1− 1

n+1︸︷︷︸
< 1

n

)
· · ·
(
1− k−1

n+1︸︷︷︸
< k−1

n

)

> 1 +
n+1∑
k=1

1

k!

(
1− 1

n

)
· · ·
(
1− k−1

n

)
= 1 +

n∑
k=1

1

k!

(
1− 1

n

)
· · ·
(
1− k−1

n

)
= en .

Dans l’avant-dernière égalité, on a utilisé le fait que si k = n + 1, alors 1 − k−1
n = 0. Comme en est

strictement croissante, on a en particulier que en > e1 = 2.

⋆ Affirmation :(en) est majorée par M = 3. En utilisant encore une fois l’expression ci-dessus,

en = 1 +

n∑
k=1

1

k!

(
1− 1

n︸ ︷︷ ︸
<1

)
· · ·
(
1− k−1

n︸ ︷︷ ︸
<1

)
< 1 +

n∑
k=1

1

k!

= 1 +
1

1!
+

n∑
k=2

1

k!

Remarquons maintenant que pour tout k ⩾ 2,

k! = k︸︷︷︸
⩾2

· (k − 1)︸ ︷︷ ︸
⩾2

· · · 3︸︷︷︸
⩾2

·2 · 1 ⩾ 2k−1 ,

et donc

en < 1 + 1 +

n∑
k=2

1

2k−1
< 1 +

∞∑
j=0

1

2j
= 1 +

1

1− 1
2

= 3 .
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On a donc montré que (en) est croissante et majorée, donc elle converge. Puisque 2 ⩽ en < 3 pour tout n,
sa limite appartient aussi à cet intervalle.

On connaît aujourd’hui des milliards de chiffres (lien web) de l’expansion décimale de e. Ses
premiers termes (lien web) sont

e = 2.718281828459045235360287471352662497 . . .

Euler a montré en 1737 que e est un nombre irrationnel.

3.10 Critère de d’Alembert pour les suites

Théorème 3.58. (Critère de d’Alembert pour les suites)
Soit (an) une suite telle que la limite suivante existe :

ρ := lim
n→∞

∣∣∣an+1

an

∣∣∣ .
⋆ Si 0 ⩽ ρ < 1, alors (an) converge et an → 0.

⋆ Si ρ > 1, alors (an) diverge, et si en plus an ⩾ 0 pour tout n suffisamment grand, alors an → +∞.

Preuve: Supposons pour commencer que 0 ⩽ ρ < 1. On peut donc choisir un δ > 0 tel que ρ < 1− δ,

et trouver un entier N tel que ∣∣∣an+1

an

∣∣∣ ⩽ 1− δ ∀n ⩾ N ,

c’est-à-dire
|an+1| ⩽ (1− δ)|an| ∀n ⩾ N .

En utilisant cette inégalité pour N ,
|aN+1| ⩽ (1− δ)|aN | ,

en l’utilisant pour N + 1,
|aN+2| ⩽ (1− δ)|aN+1| ⩽ (1− δ)2|aN | ,

et ainsi de suite, en l’utilisant pour N + k,

|aN+k| ⩽ (1− δ)|aN+(k−1)| ⩽ · · · ⩽ (1− δ)k|aN | ,

ce qui implique, puisque (1− δ)k → 0 lorsque k → ∞, que

lim
n→∞

|an| = lim
k→∞

|aN+k| = 0 .

Ceci implique an → 0.

Supposons maintenant que ρ > 1, et fixons un δ > 0 tel que ρ > 1 + δ. On a alors l’existence d’un entier N
tel que ∣∣∣an+1

an

∣∣∣ ⩾ 1 + δ ∀n ⩾ N .

En utilisant cette inégalité pour N ,
|aN+1| ⩾ (1 + δ)|aN | ,
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en l’utilisant pour N + 1,
|aN+2| ⩾ (1 + δ)|aN+1| ⩾ (1 + δ)2|aN | ,

et ainsi de suite, en l’utilisant pour N + k,

|aN+k| ⩾ (1 + δ)|aN+(k−1)| ⩾ · · · ⩾ (1 + δ)k|aN | ,

ce qui implique, puisque (1 + δ)k → +∞ lorsque k → ∞, que

lim
n→∞

|an| = lim
k→∞

|aN+k| = +∞ .

Ainsi, (an) n’a pas de limite, et si an ⩾ 0 pour tout n suffisamment grand, alors

lim
n→∞

an = lim
n→∞

|an| = +∞ .

Informel 3.59. Ce critère est utile, mais il s’applique seulement à des suites pour lesquelles |an|
tend très vite vers zéro, ou très vite vers l’infini. (Voir exemples plus bas.)

Exemple 3.60. Considérons la suite

an =
n2

2n
.

On a montré précédemment que cette suite tendait vers zéro, en montrant que le comportement
exponentiel l’emporte sur le polynomial. Voyons comment le critère de d’Alembert permet d’ob-
tenir le même résultat. Calculons

ρ = lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(n+ 1)2/2n+1

n2/2n

∣∣∣
=

1

2
lim
n→∞

(n+ 1)2

n2
=

1

2
< 1 .

Par le critère, ceci implique que an → 0. ⋄

Le critère est souvent utile dans l’étude du comportement de quotients présentant une indétermi-
nation du type “∞

∞”, et où on ne voit pas clairement comment extraire un terme dominant.
Exemple 3.61. Considérons

xn =
n!

nn
,

également considérée précédemment. Écrivons le quotient

xn+1

xn
=

(n+ 1)!

n!

nn

(n+ 1)n+1
=

nn

(n+ 1)n
=

1

(1 + 1
n
)n
.

Ainsi,

ρ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = 1

limn→∞(1 + 1
n
)n

=
1

e
=

1

2.718 . . .
< 1 .

On conclut que xn → 0. ⋄

Il est important de souligner que le critère de d’Alembert ne dit rien dans le cas où ρ = 1. Or beau-
coup de suites très simples, dont le comportement est bien connu, sont des suites pour lesquelles
ρ = 1. Voyons trois exemples.

72 NumChap: chap-suites-reelles, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)

botafogo.saitis.net
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Exemple 3.62. Pour la suite an = 1
n

, on a

ρ = lim
n→∞

1
n+1
1
n

= lim
n→∞

n

n+ 1
= 1 ,

donc le critère ne permet pas de conclure. (Pourtant, on sait bien que an → 0 !) ⋄
Exemple 3.63. Pour la suite an = n, on a aussi ρ = 1, donc le critère ne permet pas de conclure.
(Pourtant, on sait bien que an → ∞ !) ⋄
Exemple 3.64. Pour la suite an = (−1)n, on a aussi ρ = 1, donc le critère ne permet pas de conclure.
(Pourtant, on sait bien que an n’a pas de limite !) ⋄

3.11 Limite supérieure, limite inférieure

On sait qu’une suite convergente est bornée, mais le contraire n’est pas vrai : une suite peut être
bornée sans converger (par exemple : (−1)n).

On va voir ici que l’on peut malgré tout associer à toute suite bornée deux nombres, appelés limite
supérieure et limite inférieure, qui donnent des informations utiles sur le comportement de la suite
à l’infini. On verra aussi que ces deux nombres sont utiles pour étudier la convergence de la suite,
puisqu’ils sont égaux si et seulement si la suite converge.

(ici, Video: v_suites_limsup.mp4)

Soit (an) une suite bornée. On définit deux nouvelles suites, (Mn) et (mn) en posant, pour tout n,

Mn := sup{an, an+1, . . . } ,
mn := inf{an, an+1, . . . } .

Ces deux suites de réels sont bien définies puisque l’on suppose (an) bornée. De plus,

⋆ Comme Mn majore {an, an+1, . . . }, on a en particulier que an ⩽Mn.
⋆ Comme mn minore {an, an+1, . . . }, on a en particulier que an ⩾ mn.

On peut donc écrire
mn ⩽ an ⩽Mn ∀n . (3.1)

Lemme 15. Les suites (Mn) et (mn) sont monotones et bornées. Plus précisément,

⋆ (Mn) est décroissante et minorée.

⋆ (mn) est croissante et majorée.

En particulier, ces deux suites sont convergentes.

Preuve: Définissons An := {an, an+1, . . . }. Puisque An+1 ⊂ An, on a d’une part que supAn+1 ⩽ supAn, ce
qui donne

Mn+1 ⩽Mn,

et d’autre part que inf An+1 ⩾ inf An, ce qui donne

mn+1 ⩾ mn .

Comme (an) est bornée, (Mn) est minorée, et (mn) est majorée. On a donc existence des limites limn→∞Mn

et limn→∞mn.

On observe ces propriétés sur l’animation ci-dessous. La suite (an) est représentée par les points
noirs, (Mn) par les points rouges, et (mn) par les points bleus :
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Maintenant que l’on sait que ces suites sont convergentes, il est naturel de donner des noms à
leurs limites :

Définition 3.65. Soit (an) une suite bornée, (Mn) et (mn) définies comme ci-dessus.

1) La limite supérieure de (an) est définie par

lim sup
n→∞

an := lim
n→∞

Mn .

2) La limite inférieure de (an) est définie par

lim inf
n→∞

an := lim
n→∞

mn .

Remarque 3.66. ⋆ Une suite bornée peut ne pas converger, mais ses limites supérieures et in-
férieures existent toujours.

⋆ Puisque mn ⩽Mn pour tout n, on a que

lim inf
n→∞

an ⩽ lim sup
n→∞

an .

⋄
Exemple 3.67. Considérons la suite an = (−1)n, qui comme on le sait est bornée mais ne possède
pas de limite. Quel que soit la valeur de n, l’ensemble {an, an+1, . . . } contient une infinité de +1,
et une infinité de −1, ce qui implique Mn = +1 et mn = −1. Ainsi,

lim
n→∞

Mn = +1 ,

lim
n→∞

mn = −1 ,

qui signifie

lim sup
n→∞

an = +1 ,

lim inf
n→∞

an = −1 .

⋄
Exemple 3.68. Considérons an = 1

n
. Puisque (an) est décroissante,

Mn = sup{an, an+1, . . . }

= sup

{
1

n
,

1

n+ 1
, . . .

}
=

1

n
→ 0 .
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Aussi,

mn = inf{an, an+1, . . . }

= inf

{
1

n
,

1

n+ 1
, . . .

}
= 0

On a donc
lim sup
n→∞

an = lim inf
n→∞

an = 0 .

Remarquons que dans ce cas, on sait aussi que lim
n→∞

an = 0. ⋄

On a vu dans ce dernier exemple un cas d’une suite convergente pour laquelle les limites supé-
rieures et inférieures avaient une valeur commune. C’est en fait un critère :

Théorème 3.69. Soit (an) une suite bornée. Alors (an) converge si et seulement si ses limites inférieures
et supérieures sont égales. Plus précisément :

lim
n→∞

an = L ⇔ lim inf
n→∞

an = lim sup
n→∞

an = L .

Bien-sûr ce résultat est aussi utile si on veut montrer qu’une suite bornée ne converge pas : il suffit
de voir que ses limites supérieures et inférieures sont différentes.
Preuve: (Voir aussi la vidéo)
⇒: Si an → L, alors pour tout ε > 0 il existe N tel que |an − L| ⩽ ε pour tout n ⩾ N . Ceci implique que

L− ε ⩽ an ⩽ L+ ε , ∀n ⩾ N ,

et donc en particulier que pour tout n ⩾ N ,

Mn = sup{an, an+1, . . . } ⩽ L+ ε ,

et
mn = inf{an, an+1, . . . } ⩾ L− ε .

Par conséquent,
L− ε ⩽ lim inf

n→∞
an ⩽ lim sup

n→∞
an ⩽ L+ ε .

Comme ε > 0 est arbitraire, on a
lim inf
n→∞

an = lim sup
n→∞

an = L .

⇐: Supposons que lim infn→∞ an = lim supn→∞ an = L. Si on fixe ε > 0, alors on a d’une part qu’il existe
un N+ tel que

sup{an, an+1, . . . } ⩽ L+ ε , ∀n ⩾ N+

et d’autre part qu’il existe un N− tel que

inf{an, an+1, . . . } ⩾ L− ε , ∀n ⩾ N−

Ceci implique, en particulier, que

L− ε ⩽ an ⩽ L+ ε , ∀n ⩾ N ,

où on a posé N = max{N−, N+}. Ceci montre que an → L.

Exemple 3.70. Considérons la suite (an)n⩾0 définie par

an = sin(π
4
+ nπ

2
) .
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Ses premiers termes n = 0, 1, 2, 3 sont

+

√
2

2
,+

√
2

2
,−

√
2

2
,−

√
2

2
,

Par la périodicité du sinus, le reste de la suite s’obtient en répétant cette séquence. On a en parti-
culier que pour tout n,

Mn = +

√
2

2
, mn = −

√
2

2
.

On a donc

lim sup
n→∞

an = +

√
2

2
,

lim inf
n→∞

an = −
√
2

2
.

Par le théorème précédent, on en conclut que (an) est divergente. ⋄

3.12 Le Théorème de Bolzano-Weierstrass
Informel 3.71. Supposons qu’à l’aide d’un stylo bleu, on place une infinité de points, un à un,
dans un intervalle [a, b] :

Le Théorème de Bolzano-Weierstrass affirme que peu importe comment on choisit ces points, il existe
forcément un point de l’intervalle proche duquel vont s’accumuler une infinité de points bleus.

(ici, Video: v_suites_Bolzano_Weierstrass.mp4)

Pour énoncer le théorème rigoureusement, il nous faut un peu de terminologie :

Définition 3.72. Soit (xn)n⩾0 une suite, et 0 ⩽ n0 < n1 < n2 < . . . une suite d’entiers, strictement
croissante. Si on pose

bk := xnk
,

la suite (bk)k⩾0 = (xnk
)k⩾0 est appelée sous-suite de (xn)n⩾0.

Une sous-suite s’obtient donc à partir de (xn)n⩾0 en ne gardant que certains termes, et en ignorant
tous ceux dont l’indice est entre deux entiers consécutifs de la suite (nk)k⩾0 :
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En choisissant les entiers nk et en considérant (xnk
)k, on dit qu’on a extrait une sous-suite de

(xn)n.
Exemple 3.73. Considérons la suite (xn)n⩾0 définie par

xn = sin(nπ
4
) .

On comprend cette suite en plaçant l’angle nπ
4

sur le cercle trigonométrique et en regardant son
sinus évoluer sur l’axe Oy. Ses premiers termes, en partant de n = 0, sont

0,

√
2

2
, 1,

√
2

2
, 0,−

√
2

2
,−1,−

√
2

2
, 0 .

⋆ Si on considère les indices pairs, à savoir nk = 2k,

alors (xnk
)k⩾0 est la suite 0, 1, 0,−1, 0, 1, 0,−1, . . .

⋆ Si on considère les entiers multiples de 4, nk = 4k,

alors (xnk
)k⩾0 est une suite constante puisque xnk

= x4k = sin(kπ) = 0 pour tout k.

Ces deux exemples ont proposé des sous-suites le long desquelles on observait une certaine régu-
larité, mais on peut considérer des sous-suites arbitraires, par exemple celle obtenue en prenant
nk = k2 + [

√
k], pour lesquelles on n’observe en général aucune régularité particulière. ⋄
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Théorème 3.74. (Théorème de Bolzano-Weierstrass) De toute suite bornée (xn)n on peut extraire une
sous-suite convergente. Plus précisément : Si xn ∈ [a, b] pour tout n, alors il existe L ∈ [a, b] et une
sous-suite (xnk

)k telle que xnk
→ L.

Preuve: Soit L := lim supn→∞ xn, c’est-à-dire

L = lim
n→∞

Mn ,

oùMn = sup{xn, xn+1, . . . }. Considérons une suite (εj)j⩾1 positive, tendant vers zéro. (Pour fixer les idées,
on peut choisir εj := 1

j .)

⋆ j = 1 : Par définition de la limite, il existe n′1 tel que

L− ε1
2 ⩽Mn′

1
⩽ L+ ε1

2 .

Par définition du supremum, il existe n1 ⩾ n′1 tel que

L− ε1 ⩽ xn1 ⩽ L+ ε1 .

⋆ j = 2 : Par définition de la limite, il existe n′2 > n1 tel que

L− ε2
2 ⩽Mn′

2
⩽ L+ ε2

2 .

Par définition du supremum, il existe n2 ⩾ n′2 tel que

L− ε2 ⩽ xn2 ⩽ L+ ε2 .

⋆ etc.

Ainsi, on a construit une suite (nk) strictement croissante telle que pour tout k,

L− εk ⩽ xnk
⩽ L+ εk .

Ceci signifie bien que xnk
→ L.

Exemple 3.75. Considérons la suite (xn)n⩾0 définie par

xn = cos(e3n + en
2

sin(5n3)) .

Puisque xn ∈ [−1, 1] pour tout n, le théorème garantit l’existence d’un réel L ∈ [−1, 1] et d’une
sous suite (xnk

)k telle que xnk
→ L lorsque k → ∞. ⋄

Voyons un exemple simple dans lequel la sous-suite peut être donnée explicitement.
Exemple 3.76. Considérons la suite (xn)n⩾0 définie par

xn = (−1)n
n

n+ 1
,

qui est bornée puisque |xn| = n
n+1

⩽ 1. Cette suite ne converge pas, mais le théorème garan-
tit l’existence d’une sous-suite convergente. Ici, on peut extraire explicitement deux sous-suites
convergentes, assez naturellement :

⋆ Si on ne regarde que les indices pairs, c’est-à-dire que l’on considère nk = 2k, alors on obtient
la sous-suite

x2k =
2k

2k + 1
,

qui converge vers 1 lorsque k → ∞.
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⋆ Si on ne regarde que les indices impairs, c’est-à-dire que l’on considère nk = 2k + 1, alors on
obtient la sous-suite

x2k+1 = −2k + 1

2k + 2
,

qui converge vers −1 lorsque k → ∞.
Donc dans cet exemple, on peut extraire de la suite deux sous-suites différentes, qui ont des limites
différentes :

⋄

Pour finir, remarquons qu’en général, la conclusion du théorème n’est plus vraie si la suite n’est
pas bornée :
Exemple 3.77. La suite xn = n n’est pas bornée, et elle ne possède aucune sous-suite convergente.

⋄

3.13 Suites de Cauchy

(ici, Video: v_suites_Cauchy.mp4)

Remarquons que si une suite (an) converge, alors la distance entre deux de ses éléments consécutifs
tend vers zéro :

|an+1 − an| → 0 lorsque n→ ∞ .

En effet, si limn→∞ an = L, on peut écrire

|an+1 − an| = |(an+1 − L)− (an − L)|
⩽ |an+1 − L|︸ ︷︷ ︸

→0 quand n→∞

+ |an − L|︸ ︷︷ ︸
→0 quand n→∞

.

Mais on peut en fait en dire un peu plus : la distance entre deux de ses éléments quelconques tend vers
zéro à mesure que leurs indices grandissent.

|am − an| → 0 lorsque m,n→ ∞ .

En effet, on peut toujours écrire

|am − an| = |(am − L) + (L− an)|
⩽ |am − L|︸ ︷︷ ︸

→0 quand m→∞

+ |an − L|︸ ︷︷ ︸
→0 quand n→∞

.

Cette propriété porte un nom :

Définition 3.78. (an) est une suite de Cauchy si ∀ε > 0 il existe un entier N tel que

|an − am| ⩽ ε ∀m,n ⩾ N .

On a donc démontré, ci-dessus, que toute suite convergente est une suite de Cauchy, qui est la pre-
mière moitié du théorème fondamental suivant :
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Théorème 3.79. Dans R, une suite (an) est convergente si et seulement si c’est une suite de Cauchy.

Preuve: Soit (an) une suite convergente : an → L. Fixons ε > 0, et considérons un entierN tel que |an−L| ⩽
ε
2 pour tout n ⩾ N . Si on considère deux entiers m,n ⩾ N , on peut utiliser l’inégalité triangulaire et écrire

|am − an| = |(am − L) + (L− an)|
⩽ |am − L|+ |an − L| ⩽ ε/2 + ε/2 = ε .

Et donc (an) est une suite de Cauchy.

Pour montrer que toute suite de Cauchy est également convergente, voir la vidéo ci-dessus.

Exemple 3.80. Considérons

an := 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
=

n∑
k=0

(−1)k

k!
.

Montrons que cette suite possède une limite, en montrant que c’est une suite de Cauchy. Pour ce
faire, étudions la différence |an − am|. En prenant n > m ⩾ 2,

|an − am| =

∣∣∣∣∣
n∑
k=0

(−1)k

k!
−

m∑
k=0

(−1)k

k!

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m+1

(−1)k

k!

∣∣∣∣∣
⩽

n∑
k=m+1

1

k!

⩽
n∑

k=m+1

1

2k−1

=
n−1∑
j=m

1

2j

=
n−1∑
j=0

1

2j
−

m−1∑
j=0

1

2j

=
1− (1

2
)n

1− 1
2

−
1− (1

2
)m

1− 1
2

= (1
2
)m−1 − (1

2
)n−1

⩽ (1
2
)m−1 .

On a utilisé k! ⩾ 2k−1 (pour tout k ⩾ 2), fait le changement d’indice j = k− 1, et utilisé la formule
pour une somme géométrique de raison r = 1

2
.

Donc si on fixe ε > 0, puisqu’il existe N tel que 1
2m−1 ⩽ ε pour tout m ⩾ N , on peut conclure que

si n ⩾ m ⩾ N , alors
|an − am| ⩽ ε .

Ceci montre que (an) est une suite de Cauchy. Par le théorème, la limite limn→∞ an existe. ⋄

Le fait que dans R, toute suite de Cauchy et convergente est une des propriétés centrales des réels ;
ici, c’est une conséquence (pas directe, certes) de l’Axiome qui garantit que dans R tout ensemble
non-vide majoré possède un supremum. Et en fait, on peut même montrer que la convergence
des suites de Cauchy est équivalente à l’existence du supremum.
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Il est important de souligner que cette équivalence n’a pas lieu dans les rationnels. En effet, on
peut introduire la même notion de suite de Cauchy dans Q, et montrer que toute suite convergente
an ∈ Q est une suite de Cauchy. Par contre, il existe des suites de Cauchy dans Q qui ne convergent
pas dans Q. Par exemple, la suite

an := 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!

est une suite de rationnels (puisque an est une somme finie de rationnels), et on peut montrer
comme ci-dessus que c’est une suite de Cauchy, et donc qu’elle converge.

Par contre, on peut montrer que la limite de an est e = 2.718 . . ., qui est irrationnel (voir la preuve
donnée plus loin dans cette section (lien vers la section m_fonctions_EXPLOG), cette vidéo
(Numberphile) (lien web), ou encore celle-ci (Michael Penn) (lien web)). Donc (an) est une suite
de Cauchy (de rationnels), qui converge dans R mais pas dans Q.

On dit que R est un corps complet (car toute suite de Cauchy converge), alors que Q est aussi un
corps, mais qui n’est pas complet.
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