
Chapitre 5

Séries numériques

5.1 Définitions et exemples

(ici, Video: v_series_intro_definition.mp4)

Une série, en analyse, est une somme infinie.

Dans ce chapitre, nous étudierons les séries numériques, qui ne sont rien d’autre que des sommes
infinies dans lesquelles on somme tous les termes d’une suite donnée (an)n⩾n0 , à partir du pre-
mier :

an0 + an1 + an2 + an3 + . . .

Le symbole utilisé pour représenter un telle somme est
∞∑

n=n0

an , ou
∑
n⩾n0

an ,

ou encore, puisque l’indice est muet,
∞∑

k=n0

ak , ou
∑
k⩾n0

ak ,

que l’on lit “la somme de tous les ak, pour k allant de n0 à l’infini”, et on dit que son terme général
est ak.

Il s’agit donc de définir rigoureusement ce que signifie “sommer une infinité de nombres”. Pour
simplifier un peu l’exposition, on supposera souvent que n0 = 0 ou 1. Nous fixons donc une suite
(an)n⩾0, et commençons à sommer un à un ses éléments, en commençant par le premier. Ceci
mène à définir les sommes successives obtenues :

Définition 5.1. Soit (an)n⩾0 une suite de réels. On définit la suite (sn)n⩾0 ainsi :

s0 := a0

s1 := a0 + a1

s2 := a0 + a1 + a2
...

sn := a0 + a1 + a2 + · · ·+ an
...

On appelle (sn)n⩾0 la suite des sommes partielles associée à (an)n⩾0. sn est la n-ème somme
partielle.
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5.1. Définitions et exemples

Quelle que soit la suite (an)n⩾0, la suite des sommes partielles associée (sn)n⩾0 est toujours bien
définie. On donne alors un sens à la somme infinie des an en considérant la limite de la suite des
sommes partielles :

Définition 5.2. Soit (sn)n⩾0 la suite des sommes partielles associée à (an)n⩾0. Si (sn)n⩾0 converge,
c’est-à-dire si la limite

s := lim
n→∞

sn

existe et est finie, on dit que la série
∞∑
n=0

an converge, et que sa somme vaut s. On écrit :

∞∑
n=0

an = s .

Dans les autres cas, on dit que la série diverge.

Lorsque lim
n→∞

sn = ±∞, on écrit
∞∑
n=0

an = ±∞ .

Exemple 5.3. (Suite constante) Soit (an)n⩾0 la suite définie par an = c pour tout n ⩾ 0, où c ∈ R est
une constante. La nème somme partielle est

sn = a0 + a1 + · · ·+ an

= c+ c+ · · ·+ c︸ ︷︷ ︸
n+1 fois

= c(n+ 1) .

Ainsi,

lim
n→∞

sn = lim
n→∞

c(n+ 1) =


+∞ si c > 0 ,

0 si c = 0 ,

−∞ si c < 0 ,

ce qui implique que la série
∑

n⩾0 an converge si et seulement si c = 0, et dans ce cas∑
n⩾0

an = 0 .

Lorsque c ̸= 0, la série diverge et

∑
n⩾0

an =

{
+∞ si c > 0 ,

−∞ si c < 0 .

⋄

Ce dernier exemple a montré, sans surprise, qu’une somme infinie de nombres strictement posi-
tifs, tous égaux, est infinie.
Exemple 5.4. Soit (an)n⩾0 définie par an = n. La somme partielle sn est donc

sn = 0 + 1 + 2 + 3 + 4 + · · ·+ n .
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5.1. Définitions et exemples

On sait (lien vers la section m_elementaire_sommes_produits) que cette somme vaut

sn =
n(n+ 1)

2
,

ce qui implique que sn → ∞. Donc la série diverge :

1 + 2 + 3 + 4 + · · · =
∞∑
n=1

n = +∞ ,

⋄

Même si cela peut sembler contre-intuitif, il est possible de sommer une infinité de nombres non-
nuls, et d’obtenir une somme totale finie ; nous avions déjà rencontré ce phénomène dans l’étude
de la série géométrique ; celle-ci fournit notre premier exemple non-trivial de série convergente :
Exemple 5.5. La série de terme général an = rn, où r ∈ R est fixé, n’est autre que la série géomé-
trique de raison r :

∞∑
n=0

an = 1 + r + r2 + r3 + · · ·

Si r = 1, la nème somme partielle est sn = n+ 1, qui diverge bien-sûr. Si r ̸= 1, on peut (lien vers
la section m_elementaire_sommes_produits) calculer

sn = 1 + r + r2 + r3 + · · ·+ rn =
1− rn+1

1− r
,

et conclure :
∞∑
n=0

rn =

{
converge si |r| < 1,

diverge sinon.

De plus, dans le cas où |r| < 1, sn → 1
1−r , et donc

∞∑
n=0

rn =
1

1− r
.

Par exemple,

1 +
1

2
+

1

22
+

1

23
+ · · · =

∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2 ,

1− 1

3
+

1

32
− 1

33
+ · · · =

∞∑
n=0

(
−1

3

)n
=

1

1− (−1
3
)
=

3

4
.

⋄

Nous connaissons un autre cas de série convergente (de termes non-nuls), plus compliqué :
Exemple 5.6. Nous avons vu (lien vers la section m_suites_majorees_convergent) que la
série de terme général an = 1

n2 ,∑
k⩾1

1

k2
= 1 +

1

22
+

1

32
+ · · · converge .

En effet, nous avions montré que les sommes partielles

sn = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

forment une suite croissante et majorée, donc convergente.
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5.1. Définitions et exemples

⋄

5.1.1 Divergence de la série harmonique

Au vu du premier exemple de la section précédente, on peut facilement construire des exemples
de séries divergentes, comme par exemple

1 + 1 + 1 + 1 + · · · = +∞

Considérons maintenant un exemple plus intéressant, et bien plus important, celui de la série
harmonique.

Théorème 5.7. La série harmonique, de terme général an = 1
n

, est divergente :

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · · = +∞ .

En d’autres termes, si l’on fait un pas de longueur 1, puis un pas de longueur 1
2
, puis un pas de

longueur 1
3
, et ainsi de suite (toujours vers la droite), alors on part à l’infini.

Preuve: Remarquons que la suite des sommes partielles associée à la suite an = 1
n est strictement croissante :

sn+1 > sn. Pour montrer que sn → ∞, il suffit donc de trouver une sous-suite (snk
)k telle que snk

→ ∞.

Considérons les indices qui sont des puissances de 2 :

s2 = s21 = 1 + 1
2︸ ︷︷ ︸

⩾ 1
2

⩾ 1
2

s4 = s22 = 1 + 1
2︸ ︷︷ ︸

⩾ 1
2

+ 1
3 + 1

4︸ ︷︷ ︸
⩾2·14=

1
2

⩾ 2 · 1
2

s8 = s23 = 1 + 1
2︸ ︷︷ ︸

⩾ 1
2

+ 1
3 + 1

4︸ ︷︷ ︸
⩾2·14=

1
2

+ 1
5 + · · ·+ 1

8︸ ︷︷ ︸
⩾4·18=

1
2

⩾ 3 · 1
2

s16 = s24 = 1 + 1
2︸ ︷︷ ︸

⩾ 1
2

+ 1
3 + 1

4︸ ︷︷ ︸
⩾2·14=

1
2

+ 1
5 + · · ·+ 1

8︸ ︷︷ ︸
⩾4·18=

1
2

+ 1
9 + · · ·+ 1

16︸ ︷︷ ︸
⩾8· 116=

1
2

⩾ 4 · 1
2

Plus généralement, on peut montrer que pour tout entier k ⩾ 1,

s2k ⩾
k

2
.

Comme k
2 → ∞ lorsque k → ∞, on conclut que s2k → ∞.
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5.1. Définitions et exemples

Une autre preuve (très semblable) de la divergence de la série harmonique : A stylish proof that... (Michael
Penn) (lien web)

Nous venons de montrer que la suite partielle associée à la série harmonique,

sn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
,

tend vers l’infini : Cela signifie que quel que soit le seuil M > 0 que l’on fixe, aussi grand soit-il, il
existe toujours un indice N tel que sn ⩾M pour tout n ⩾ N .

Informel 5.8. La suite des sommes partielles de la série harmonique tend vers l’infini, mais très
lentement... Par exemple, si dans l’animation ci-dessus on fixait M = 50, il faudrait que n soit au

moins ·1021 pour voir qu’effectivement sn ⩾ 50...

On pourra également lire les commentaires se trouvant ici (lien web).

.

5.1.2 Sur l’importance de la définition de convergence pour une série

Exemple 5.9. Considérons an = (−1)n, n ⩾ 0. Les sommes partielles sont alors

s0 = (−1)0 = 1

s1 = (−1)0 + (−1)1 = 1− 1 = 0

s2 = (−1)0 + (−1)1 + (−1)2 = 1− 1 + 1 = 1

s3 = (−1)0 + (−1)1 + (−1)2 + (−1)3 = 1− 1 + 1− 1 = 0

...

Ainsi,

sn =

{
0 si n est impair,
1 si n est pair.

Donc sn, ce qui signifie que la série∑
n⩾0

(−1)n = 1− 1 + 1− 1 + 1− 1 + 1 · · ·

est divergente. ⋄
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5.2. Propriétés des séries convergentes

Informel 5.10. On serait peut-être tenté de calculer la somme infinie du dernier exemple,

s = 1− 1 + 1− 1 + 1− 1 + 1 · · ·

à l’aide d’opérations algébriques injustifiées.

Par exemple, on pourrait réorganiser les termes de la série par paquets de deux :

s = (1− 1)︸ ︷︷ ︸
=0

+(1− 1)︸ ︷︷ ︸
=0

+ · · · = 0 .

Mais une autre façon de réarranger donnerait

s = 1 + (−1 + 1)︸ ︷︷ ︸
=0

+(−1 + 1)︸ ︷︷ ︸
=0

+ · · · = 1

Ou alors, en multipliant la somme par 2,

2s = s+ s = 1− 1 + 1− 1 + 1− 1 + 1− · · ·
+ 1− 1 + 1− 1 + 1− 1 + · · ·

= 1 ,

et donc s = 1
2
... (Voir aussi ici (lien web) pour une autre façon de formuler la même absurdité.)

Les manipulations formelles faites sur cet exemple (insérer des parenthèses, sommer terme à
terme) sont interdites, parce qu’elles s’effectuent sur une série divergente. Ceci montre que l’on
ne peut pas manipuler une série comme on manipule une somme contenant un nombre fini de
termes, et souligne l’importance de la définition de convergence que nous avons adoptée pour une
série (via les sommes partielles).

Dans la section suivante on montrera, entre autres, que pour les séries convergentes, les manipula-
tions usuelles sur les sommes finies sont autorisées.

5.2 Propriétés des séries convergentes

(ici, Video: v_series_proprietes.mp4)

5.2.1 Le terme général tend vers zéro

Intuitivement, il est clair que pour pouvoir sommer une infinité de nombres an, il faut que ceux-ci
deviennent toujours plus petits à mesure que n devient grand :

Lemme 16. Si
∑

n an converge, alors an → 0.

Preuve: Si la série converge, cela signifie que la suite des sommes partielles a une limite : sn → s. On a donc

an = (a1 + a2 + · · ·+ an−1 + an︸ ︷︷ ︸
=sn

)− (a1 + a2 + · · ·+ an−1︸ ︷︷ ︸
=sn−1

)

= sn − sn−1 ,

ceci implique que an → s− s = 0.

Comme corollaire du lemme ci-dessus, on a un résultat pratique : si le terme général d’une série
ne tend pas vers zéro, alors cette série diverge.
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5.2. Propriétés des séries convergentes

Exemple 5.11. La série
∑
n⩾1

1 + 3n

2n + 3n
diverge. En effet, son terme général ne tend pas vers zéro

puisque

lim
n→∞

an = lim
n→∞

1 + 3n

2n + 3n
= lim

n→∞

3n(1 + 3−n)

3n(1 + (2
3
)n)

= lim
n→∞

1 + 3−n

1 + (2
3
)n

= 1 .

⋄

Informel 5.12. Attention : il ne suffit pas que an → 0 pour que
∑

n an converge ! Par exemple, la série
harmonique a son terme général qui tend vers zéro, an = 1

n
→ 0 ; mais elle diverge.

Donc pour qu’une série converge, son terme général doit faire plus que juste “tendre vers zéro” :
il doit tendre vers zéro suffisamment vite.

5.2.2 Converger : un propriété asymptotique

La deuxième qualité importante peut être formulée en disant que la convergence/divergence d’une
série est un propriété qui ne dépend pas d’un nombre fini de ses termes. En effet, si une série converge
(resp. diverge), alors on peut modifier un nombre arbitraire (mais fini) de termes, elle continuera à conver-
ger (resp. diverger).

Exemple 5.13. On sait que la série harmonique
∑

n
1
n

diverge, et que la série
∑

n
1
n2 converge.

Fixons un entier N0, arbitrairement grand.

⋆ Si on définit

an :=

{
0 si n < N0 ,
1
n

si n ⩾ N0 ,

alors
∑

n an diverge.

⋆ Si on définit

bn :=

{
1
n

si n < N0 ,
1
n2 si n ⩾ N0 ,

alors
∑

n bn converge.

⋄

5.2.3 Sommes et multiplication par un scalaire

Finalement, donnons deux propriétés simples utilisées constamment dans la manipulation des
séries convergentes :
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5.2. Propriétés des séries convergentes

Proposition 7. Soient
∑
n

an et
∑
n

bn des séries convergentes.

1)
∑
n

(an + bn) est convergente, et

∑
n

(an + bn) =
∑
n

an +
∑
n

bn

2) Pour toute constante λ ∈ R,
∑
n

λan est convergente, et

∑
n

λan = λ
∑
n

an

En particulier, pour toutes constantes α, β ∈ R,∑
n

(αan + βbn) = α
∑
n

an + β
∑
n

bn

Preuve: Pour des suites (an)n⩾0, (bn)n⩾0, considérons les sommes partielles associées, notées respective-
ment (sn)n⩾0 et (s′n)n⩾0. On a donc, par hypothèse, existence des limites

lim
n→∞

sn =
∑
k⩾0

ak

lim
n→∞

s′n =
∑
k⩾0

bk .

Soit (s′′n)n⩾0 la suite des sommes partielles associées à la suite (an + bn)n⩾0. Pour tout n,

s′′n =
n∑
k=0

(ak + bk) = sn + s′n .

(On a fait une opération autorisée puisque les deux sommes sont finies !) Étant la somme de deux suites
convergentes, s′′n est également convergente, et de plus sa somme est∑

k⩾0

(ak + bk) = lim
n→∞

s′′n

= lim
n→∞

(sn + s′n) =

= lim
n→∞

sn + lim
n→∞

s′n

=
∑
k⩾0

ak +
∑
k⩾0

bk .

L’autre propriété se démontre de la même façon.

Exemple 5.14. Dans
∑
n⩾0

(
3

2n
+

5(−2)n

7n

)
, on reconnaît deux séries géométriques,

∑
n⩾0

1

2n
et
∑
n⩾0

(−2)n

7n
,

toutes deux convergentes puisque de raisons |r| < 1. On peut donc utiliser la proposition, et en
déduire que notre série de départ converge. De plus, sa somme vaut∑

n⩾0

(
3

2n
+

5(−2)n

7n

)
= 3

∑
n⩾0

1

2n
+ 5

∑
n⩾0

(
−2

7

)n
= 3 · 1

1− 1
2

+ 5 · 1

1− (−2
7
)

=
89

9
⋄
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5.3. Le critère de comparaison

5.3 Le critère de comparaison

(ici, Video: v_series_critere_comparaison.mp4)

Le critère le plus utilisé dans l’étude des séries. Il permet, lorsqu’il s’applique, d’étudier la conver-
gence/divergence d’une série donnée, en la comparant avec une autre série donc la conver-
gence/divergence est connue.

Théorème 5.15. Soient (an) et (bn) deux suites telles que

0 ⩽ an ⩽ bn

pour tout n suffisamment grand.

1) Si
∑
n

bn converge, alors
∑
n

an converge aussi.

2) Si
∑
n

an = +∞, alors
∑
n

bn = +∞.

Preuve: Supposons pour commencer que 0 ⩽ an ⩽ bn pour tout n ⩾ 1 (au lieu de juste “pour tout n
suffisamment grand”). Définissons les sommes partielles :

sn :=
n∑
k=1

ak , s′n :=
n∑
k=1

bk .

Par définition,
∑

n⩾1 an converge si et seulement si sn est convergente, et
∑

n⩾1 bn converge si et seulement
si s′n est convergente.
Puisque 0 ⩽ an ⩽ bn pour tout n, on a aussi que

0 ⩽ sn ⩽ s′n ∀n ⩾ 1 .

De plus, comme tous les termes que leurs sommes contiennent sont positifs, sn et s′n sont des suites crois-
santes. En effet, on peut écrire, pour tout n ⩾ 1,

sn+1 − sn = (a1 + · · ·+ an + an+1)− (a1 + · · ·+ an)

= an+1 ⩾ 0 ,

et donc sn+1 ⩾ sn. (Pareil avec s′n.)

1) Si
∑

n⩾1 bn converge, alors il existe s′ ∈ R tel que s′n → s′. Comme s′n est croissante, on a s′n ⩽ s′,
et donc aussi sn ⩽ s′. Donc sn est croissante et majorée, donc aussi convergente, ce qui signifie que∑

n⩾1 an converge.

2) Si
∑

n⩾1 an = +∞, c’est que sn → ∞, et donc comme s′n ⩾ sn pour tout n ⩾ 1, on a aussi que s′n → ∞,
c’est-à-dire

∑
n⩾1 bn = +∞.

Maintenant, si on a 0 ⩽ an ⩽ bn seulement à partir d’un certain n0, on peut adapter l’argument sans
difficulté, en redéfinissant

sn :=

n∑
k=n0

ak , s′n :=

n∑
k=n0

bk .

Exemple 5.16. Considérons la série ∑
n⩾1

1

2n + n+ sin(n)
.
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5.4. Le critère de Leibniz

Pour tout n ⩾ 1, n+ sin(n) ⩾ 1− 1 = 0. On peut donc comparer :

0 ⩽
1

2n + n+ sin(n)︸ ︷︷ ︸
=:an

⩽
1

2n︸︷︷︸
=:bn

.

Puisque
∑

n⩾1 bn est une série géométrique de raison r = 1
2
< 1, elle converge. Donc

∑
n⩾1 an

converge aussi. ⋄
Exemple 5.17. Considérons ∑

n⩾1

1

np
,

où p est un réel fixé.

⋆ On sait déjà que dans le cas p = 2, ∑
n⩾1

1

n2
converge.

Or si on prend n’importe quel p > 2, alors np ⩾ n2 (pour tout n ⩾ 1), et donc

0 ⩽
1

np︸︷︷︸
=an

⩽
1

n2︸︷︷︸
=bn

pour tout n ⩾ 1 .

Donc par le critère de comparaison,
∑

n⩾1
1
np converge aussi.

⋆ D’autre part, on sait que la série harmonique∑
n⩾1

1

n
= ∞ .

Or si on prend n’importe quel p < 1, alors np ⩽ n (pour tout n ⩾ 1), et donc

0 ⩽
1

n︸︷︷︸
=an

⩽
1

np︸︷︷︸
=bn

pour tout n ⩾ 1 .

Donc par le critère de comparaison,
∑

n⩾1
1
np = +∞.

On a donc montré que ∑
n⩾1

1

np
=

{
diverge si p ⩽ 1 ,

converge si p ⩾ 2 .

Nous verrons plus loin ce qu’il en est des valeurs intermédiaires p ∈]1, 2[. ⋄

5.4 Le critère de Leibniz

(ici, Video: v_series_critere_alternee.mp4)

Certaines séries très particulières ont un terme général tel que le signe d’un terme est opposé au
signe du terme suivant ; on appelle ces séries alternées. Sous certaines conditions additionnelles,
on peut garantir que ces séries convergent :
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5.4. Le critère de Leibniz

Théorème 5.18. (Critère de Leibniz pour les séries alternées) Soit an = (−1)nxn, où

1) xn ⩾ 0,

2) xn est décroissante, et

3) xn → 0.

Alors
∑

n⩾0 an = x0 − x1 + x2 − x3 + x4 − · · · converge.

Preuve: Soit (xn)n⩾0 une suite positive décroissante et soit sn la suite des sommes partielles associée à la
série

∑
n⩾0(−1)nxn :

s0 = x0

s1 = x0 − x1

s2 = x0 − x1 + x2

s3 = x0 − x1 + x2 − x3

. . .

Remarquons (voir l’image ci-dessus) que

s1 ⩽ s3 ⩽ s5 ⩽ · · · s6 ⩽ s4 ⩽ s2 ⩽ s0

Considérons donc les sous-suites s2k et s2k+1. Puisque (s2k) est décroissante et minorée par s1, la limite

spairs = lim
k→∞

s2k existe.

Puisque (s2k+1) est croissante et majorée par s2, la limite

simpairs = lim
k→∞

s2k+1 existe.

Mais comme |s2k+1 − s2k| = |x2k+1| → 0, on a spairs = simpairs.

Exemple 5.19. La série harmonique alternée est définie par

∑
n⩾1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

Elle s’obtient simplement en changeant le signe de tous les indices pairs de la série harmonique.
Comme on peut écrire cette série sous la forme

∑
n⩾1

(−1)n+1

n
= −

∑
n⩾1

(−1)nxn ,

où xn = 1
n

est positif, décroissant, et tend vers zéro, on conclut par le théorème du dessus qu’elle
converge. (On verra plus tard que sa somme vaut log(2)). ⋄
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5.5. Séries téléscopiques

Exemple 5.20. Considérons la série ∑
n⩾0

sin(nπ
2
)

n+ 1

Puisque sin(nπ
2
) = 0 dès que n est pair, cette série est en fait

∑
n⩾0

sin(nπ
2
)

n+ 1
=
∑
k⩾0

sin((2k + 1)π
2
)

2k + 2

Mais maintenant, sin((2k + 1)π
2
) = (−1)k, et donc

∑
n⩾0

sin(nπ
2
)

n+ 1
=
∑
k⩾0

(−1)k

2k + 2

Puisque xk := 1
2k+2

est positif, décroissant, et tend vers zéro, cette série converge. ⋄

5.5 Séries téléscopiques

Considérons une série
∑

n⩾1 an dans laquelle le terme général an est une différence,

an = xn − xn−1 ∀n ⩾ 1 .

où (xn)n⩾0 est une suite fixée. On appelle les séries de ce type des séries téléscopiques.

En effet, on remarque que la n-ème somme partielle associée à
∑

n⩾1 an peut se calculer exacte-
ment, puisque en réarrangeant les termes, beaucoup de paires se téléscopent :

sn = a1 + a2 + a3 + · · ·+ an−1 + an

= (x1 − x0) + (x2 − x1) + (x3 − x2) + · · ·+ (xn − xn−1)

= −x0 + (x1 − x1)︸ ︷︷ ︸
=0

+(x2 − x2)︸ ︷︷ ︸
=0

+ · · ·+ (xn−1 − xn−1)︸ ︷︷ ︸
=0

+xn

= xn − x0 .

On conclut de là que si la suite xn possède une limite, xn → L, alors la série
∑

n⩾1 an converge. De
plus, sa somme vaut

lim
n→∞

sn = lim
n→∞

(xn − x0) = L− x0 .

Exemple 5.21. La série téléscopique∑
n⩾2

(
cos( 1√

n
)− cos( 1√

n−1
)
)

converge puisque dn = cos( 1√
n
) → 1, et sa somme vaut∑
n⩾2

(
cos( 1√

n
)− cos( 1√

n−1
)
)
= 1− cos(1) .

⋄
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5.6. Séries
∑

n
1
np

Exemple 5.22. La série ∑
n⩾1

1

n(n+ 1)

converge puisque

0 ⩽ an ⩽
1

n2
.

Or si on regarde de plus près, on peut la voir comme une série téléscopique, puisque

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

(On verra plus tard comment faire ce genre de décomposition de façon plus systématique, appelée
décomposition en éléments simples.) La n-ème somme partielle peut donc s’écrire

sn = a1 + a2 + a3 + · · ·+ an−1 + an

=
(1
1
− 1

2

)
+
(1
2
− 1

3

)
+ · · ·+

( 1

n− 1
− 1

n

)
+
( 1
n
− 1

n+ 1

)
= 1− 1

n+ 1
,

où on a pu “téléscoper” les termes 2 à 2. On a donc que

s =
∑
n⩾1

1

n(n+ 1)
= lim

n→∞
sn = 1 .

⋄

5.6 Séries
∑

n
1
np

(ici, Video: v_series_np.mp4)

Dans cette section, on regarde de plus près les séries de la forme∑
n⩾1

1

np
,

où p est un réel fixé. On a déjà traité les cas p = 1 (série harmonique, divergente) et p = 2 (conver-

gente), et on en a déduit, par comparaison, les cas p < 1 et p > 2. Ici on complète cette analyse, en
particulier en traitant les valeurs intermédiaires 1 < p < 2.

Théorème 5.23. Soit p ∈ R. Alors

∑
n⩾1

1

np

{
converge si p > 1 ,

= +∞ si p ⩽ 1 .

Ce résultat montre à quel point la convergence/divergence d’une série peut être sensible au com-
portement de ses coefficients :

∞∑
n=1

1

n1.000001
<∞ ,
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5.6. Séries
∑

n
1
np

alors que
∞∑
n=1

1

n0.999999
= ∞ .

Preuve: Puisque les autres cas ont déjà été traités, considérons p ∈]1, 2[ (même si l’argument ci-dessous
fonctionne pour tout p > 1). Comme sn = 1 + 1

2p + · · · + 1
np est monotone croissante, il suffit de mon-

trer qu’elle est majorée pour en déduire qu’elle converge. Et pour montrer qu’elle est majorée, il suffit
de montrer qu’une sous-suite quelconque est majorée (exercice). Pour ce faire, on considère la sous-suite
s2k−1. L’idée va être de majorer cette suite, en la comparant à la somme partielle d’une série géométrique
convergente.

Pour k = 1, on a
s21−1 =

1
1p = 1 .

Pour k = 2, on peut majorer

s22−1 =
1
1p + 1

2p + 1
3p︸ ︷︷ ︸

⩽2
1
2p

⩽ 1 +
(

2
2p

)
.

Pour k = 3,

s23−1 =
1
1p + 1

2p + 1
3p︸ ︷︷ ︸

⩽2
1
2p

+ 1
4p + · · ·+ 1

7p︸ ︷︷ ︸
⩽4

1
4p

⩽ 1 +
(

2
2p

)
+
(

2
2p

)2
.

Pour k = 4,

s24−1 =
1
1p + 1

2p + 1
3p︸ ︷︷ ︸

⩽2
1
2p

+ 1
4p + · · ·+ 1

7p︸ ︷︷ ︸
⩽4

1
4p

+ 1
8p + · · ·+ 1

15p︸ ︷︷ ︸
⩽8

1
8p

⩽ 1 +
(

2
2p

)
+
(

2
2p

)2
+
(

2
2p

)3
Comme p > 1, on a 2

2p < 1, et donc pour tout k,

s2k−1 ⩽ 1 +
(

2
2p

)
+
(

2
2p

)2
+
(

2
2p

)3
+ · · ·+

(
2
2p

)k−1

< 1 +
(

2
2p

)
+
(

2
2p

)2
+
(

2
2p

)3
+ · · ·+

(
2
2p

)k−1
+ · · ·︸︷︷︸

le reste de la série

=
1

1− 2
2p
<∞ .

Dans certaines séries, on pourra parfois identifier dans le terme général an une contribution do-
minante de la forme 1

np , ce qui pourra donner des idées quant à la convergence/divergence de la
série.
Exemple 5.24. Considérons la série ∑

n⩾1

1√
4n3 + 7

.

Gardons la contribution venant uniquement du “n3”. Comme 7 ⩾ 0, on peut majorer le terme
général comme suit :

0 ⩽
1√

4n3 + 7︸ ︷︷ ︸
=an

⩽
1√
4n3

=
1

2

1

n3/2
=: bn
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5.7. Le critère de la limite du quotient

Par le théorème, la série
∑

n⩾1
1

n3/2 converge, puisqu’elle correspond au cas p = 3/2 > 1. Donc∑
n⩾1

1
2

1
n3/2 converge aussi, et par le critère de comparaison, on conclut que

∑
n⩾1

1√
4n3+7

converge.
⋄

Exemple 5.25. Considérons la série ∑
n⩾1

1

4n2 − 1
.

On remarque dans le terme général la présence d’un comportement du type 1
n2 ; on peut l’extraire

en mettant le n2 en évidence au dénominateur, et en majorant le reste :

1

4n2 − 1
=

1

n2

1

4− 1
n2

⩽
1

3n2
.

(En effet, 4 − 1
n2 ⩾ 3 pour tout n ⩾ 1.) Mais puisque la série

∑
n

1
3n2 = 1

3

∑
n

1
n2 converge (car

p = 2 > 1), le critère de comparaison implique que
∑

n
1

4n2−1
converge. ⋄

5.7 Le critère de la limite du quotient

(ici, Video: v_series_critere_limite_quotient.mp4)

Théorème 5.26. Soient (an) et (bn) deux suites. Supposons que an > 0 et bn > 0 pour tout n suffisamment
grand, et que

α := lim
n→∞

an
bn

existe.

Si α > 0, alors soit
∑

n an et
∑

n bn convergent toutes les deux, soit elles divergent toutes les deux.

Preuve: Si le quotient anbn tend vers α > 0, cela signifie qu’il est loin de zéro pour tous les indices n suffisam-
ment grands. Plus précisément, prenons ε := α/2. Alors il existe N tel que |anbn − α| ⩽ ε pour tout n ⩾ N ,
c’est-à-dire que

0 <
α

2
= α− ε ⩽

an
bn

⩽ α+ ε =
3α

2
∀n ⩾ N

qui donne

0 <
α

2
bn ⩽ an ⩽

3α

2
bn ∀n ⩾ N

Le critère de comparaison implique que si
∑

n an converge,
∑

n bn converge aussi, et si
∑

n an diverge alors∑
n bn diverge aussi, et vice versa.

Le théorème ci-dessus est très utile lorsqu’on a un terme général dans lequel on peut identifier un
terme qui doit dominer, mais pour lequel aucune comparaison simple ne se présente.
Exemple 5.27. Considérons ∑

n⩾3

1

n3 − 5n− 1
.

La présence du “n3”, qui est le terme dominant dans le dénominateur du terme général an =
1

n3−5n−1
, suggère de considérer bn = 1

n3 . En effet, an et bn sont tous deux positifs pour n suffisam-
ment grand, et

α = lim
n→∞

an
bn

= lim
n→∞

n3

n3 − 5n− 1
= 1 > 0 .

Par le théorème, la série
∑

n an converge. Remarquons pourtant que an > bn pour tout n ⩾ 2 ! ⋄
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5.8. Séries absolument convergentes

Exemple 5.28. Considérons la série

∑
n⩾1

sin

(
3

n2 + 1

)
.

Remarquons que an = sin( 3
n2+1

) > 0 pour tout n suffisamment grand. Si on se souvient du résultat
qui dit que si xn → 0, alors sin(xn)

xn
→ 1, cela suggère de poser bn = 3

n2+1
; on a alors que

α = lim
n→∞

an
bn

= lim
n→∞

sin( 3
n2+1

)
3

n2+1

= 1 > 0 .

Puisque
∑

n bn = 3
∑

n
1

n2+1
converge (son terme général étant ⩽ 3

n2 ), on conclut que
∑

n an
converge aussi. ⋄

5.8 Séries absolument convergentes

(ici, Video: v_series_absolument_conv.mp4)

Définition 5.29. Si
∑
n

|an| converge, on dit que
∑
n

an est absolument convergente.

Exemple 5.30. La série ∑
n⩾1

(−1)n

n2

est convergente (car c’est une série alternée satisfaisant au critère de Leibniz), mais elle est aussi
absolument convergente, car ∑

n⩾1

∣∣∣∣(−1)n

n2

∣∣∣∣ =∑
n⩾1

1

n2
,

qui est convergente (p = 2 > 1). Donc l’alternance de signes, dans la série de départ, n’est pas
essentielle pour garantir sa convergence. ⋄
Exemple 5.31. La série harmonique alternée est convergente, comme on sait, mais elle n’est pas
absolument convergente, car en prenant la valeur absolue de chacun de ses termes on obtient

∑
n⩾1

∣∣∣∣(−1)n+1

n

∣∣∣∣ =∑
n⩾1

1

n
,

la série harmonique, qui est divergente. Donc la série harmonique alternée a “besoin” de l’alter-
nance de ses signes pour pouvoir converger. ⋄

Ce dernier exemple montre qu’une série peut être convergente sans être absolument convergente.
D’autre part, on a le résultat important suivant, qui montre que la notion de convergence absolue
est plus forte que celle de convergence :

Théorème 5.32. Si
∑
n

an converge absolument, alors elle converge.

Donc l’ensemble des séries absolument convergentes forme un sous-ensemble de l’ensemble des
séries convergentes :
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5.9. Le critère de d’Alembert

Preuve: Définissons

sn := a1 + · · ·+ an

sn := |a1|+ · · ·+ |an| .

Comme
∑

n an est absolument convergente, la suite sn converge, ce qui implique que c’est aussi une suite
de Cauchy. Or pour tout n ⩾ m, par l’inégalité triangulaire,

|sn − sm| =
∣∣am+1 + · · ·+ an

∣∣
⩽ |am+1|+ · · ·+ |an|
= sn − sm

= |sn − sm| .

(Dans la dernière ligne, on a utilisé le fait que sn est croissante.) Fixons ε > 0. Comme (sn) est une suite
de Cauchy, il existe N tel que |sn − sm| ⩽ ε pour tous n,m ⩾ N . Par l’inégalité ci-dessus, ceci implique
que |sn − sm| ⩽ ε pour tout m,n ⩾ N . On a donc montré que (sn) est une suite de Cauchy, et donc elle
converge :

∑
n an est convergente.

Le théorème peut parfois être utile pour l’étude de la convergence (habituelle) d’une série :
Exemple 5.33. Étudions la convergence de la série

∑
n⩾0

3 sin(n)− 5 cos(n2)

2n +
√
n

.

Le numérateur contient des parties oscillantes qui compliquent l’étude de la convergence. Pour-
tant, on peut majorer sa valeur absolue,

|3 sin(n)− 5 cos(n2)| ⩽ 3 + 5 = 8 ,

et obtenir

0 ⩽ |an| =
∣∣∣3 sin(n)− 5 cos(n2)

2n +
√
n

∣∣∣ ⩽ 8

2n
=: bn .

Comme
∑

n bn = 8
∑

n
1
2n

converge (série géométrique de raison r = 1
2
), le critère de comparaison

implique que
∑

n |an| converge. Donc
∑

n an converge absolument, et par le théorème ci-dessus,
ceci implique que

∑
n an converge. ⋄

Dans les deux prochaines sections, nous verrons deux critères très utiles qui garantissent la conver-
gence absolue (et donc la convergence) d’une série.

5.9 Le critère de d’Alembert

(ici, Video: v_series_critere_quotient.mp4)
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5.9. Le critère de d’Alembert

Théorème 5.34. Soit (an) une suite pour laquelle la limite

ρ := lim
n→∞

∣∣∣an+1

an

∣∣∣
existe, ou est +∞.

1) Si ρ < 1, alors
∑

n an converge absolument (donc converge).

2) Si ρ > 1, alors
∑

n an diverge.

Preuve: La preuve commence de la même façon que celle pour le critère de l’Alembert pour les suites :

1) Si ρ < 1, on sait qu’il existe ε > 0 et un entier N tel que∣∣∣an+1

an

∣∣∣ ⩽ 1− ε ∀n ⩾ N .

On a donc, pour tout n > N ,

|an| ⩽ (1− ε)|an−1|
⩽ (1− ε)2|an−2|
⩽ . . .

⩽ (1− ε)n−N |aN | =: cn .

Mais comme cn est, à une constante près, le terme général d’une série géométrique (de raison r = 1−ε < 1),
la série

∑∞
n=N+1 cn converge. Par le critère de comparaison,

∑∞
n=N+1 |an| converge aussi, et donc

∑
n an

converge absolument.

2) On a déjà vu (Critère de d’Alembert pour les suites) que ρ > 1 implique que |an| → ∞, et donc an ne
tend pas vers zéro, ce qui implique que

∑
n an diverge.

Exemple 5.35. Considérons ∑
k⩾1

(−9)k

k!
.

Comme une comparaison avec une série plus simple n’est pas immédiatement facile, on peut
calculer

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
(−9)k+1

(k+1)!

(−9)k

k!

∣∣∣∣∣∣ = lim
k→∞

9

k + 1
= 0 .

Par le théorème, la série est absolument convergente, et donc convergente. ⋄
Exemple 5.36. Considérons la série ∑

n⩾1

(n!)3

(2n)!

On a

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

(n+1)!3

(2(n+1))!

(n!)3

(2n)!

= lim
n→∞

(n+ 1)!3

n!3
(2n)!

(2(n+ 1))!

= lim
n→∞

(n+ 1)3

(2n+ 2)(2n+ 1)
= +∞ .
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5.10. Le critère de Cauchy

Donc la série est divergente. De plus, puisque tous ses termes sont positifs, on peut écrire

∑
n⩾1

(n!)3

(2n)!
= +∞

⋄

Le théorème ci-dessus ne dit rien sur ce qui se passe lorsque ρ = 1, ce qui fait qu’il y a beaucoup
de cas où il est inefficace pour étudier une série. Par exemple, on connaît bien les séries du type∑

n
1
np , et pourtant, pour tout p > 0,

ρ = lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1/(n+ 1)p

1/np

= lim
n→∞

np

(n+ 1)p
= lim

n→∞

1

(1 + 1
n
)p

= 1 ,

donc le critère ne permet de traiter aucune valeur de p.

Donc lorsque ρ = 1, une autre méthode doit être employée pour étudier la convergence/divergence
de la série.

5.10 Le critère de Cauchy

(ici, Video: v_series_critere_Cauchy.mp4)

Théorème 5.37. Soit (an) une suite réelle, telle que la limite

σ := lim
n→∞

n
√

|an|

est soit finie, soit +∞.

1) Si σ < 1, alors
∑

n an converge absolument (et donc converge).

2) Si σ > 1, alors
∑

n an diverge.

Preuve: 1) Supposons σ < 1. Alors il existe 0 < ε < 1 et un entier N tel que

n
√

|an| ⩽ 1− ε ∀n ⩾ N .

On a donc que

|an| ⩽ (1− ε)n ∀n ⩾ N ,

Par le critère de comparaison, comme la série associée à bn := (1 − ε)n converge (géométrique de raison
r = 1− ε), celle associée à |an| converge aussi.

2) Semblable, mais dans ce cas on montre que |an| → ∞, et donc an ne tend pas vers zéro, et donc la série∑
n an diverge.

Exemple 5.38. La série ∑
n⩾1

(
1− 1

n

)n2
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5.11. Séries dépendant d’un paramètre

converge, puisque

σ = lim
n→∞

n
√

|an| = lim
n→∞

(
1− 1

n

)n
= lim

n→∞

(n− 1

n

)n
= lim

n→∞

( n− 1

(n− 1) + 1

)n
= lim

n→∞

( 1

1 + 1
n−1

)n
= lim

n→∞

1

(1 + 1
n−1

)n−1
· 1

1 + 1
n−1

= 1
e
· 1 < 1 .

⋄

Le critère de Cauchy existe en fait dans une forme un peu plus forte, dans laquelle la définition
de σ est légèrement différente :

σ := lim sup
n→∞

n
√

|an| ,

mais où la conclusion est la même : si σ < 1 alors la série converge absolument, et si σ > 1 alors
la série diverge.

L’avantage de cette deuxième version est que l’on peut étudier certaines séries pour lesquelles
la limite qui définit σ dans la première définition n’existe pas, alors qu’elle possède une limite
supérieure.
Exemple 5.39. Considérons la série ∑

n⩾0

(
1
2
+ 1

4
(−1)n

)n
.

Remarquons qu’ici,
n
√
|an| = 1

2
+ 1

4
(−1)n ,

qui n’a pas de limite lorsque n→ ∞. Pourtant,

lim sup
n→∞

n
√

|an| =
1

2
+

1

4
=

3

4
< 1 ,

et donc par la nouvelle version du critère, la série converge.

Remarquons qu’on aurait aussi simplement pu écrire

|an| =
∣∣1
2
+ 1

4
(−1)n

∣∣n ⩽ (1
2
+ 1

4
)n = (3

4
)n .

Ainsi, par comparaison avec la série géométrique de raison r = 3
4
, on conclut que

∑
n an converge

absolument. ⋄

5.11 Séries dépendant d’un paramètre

Souvent, les séries sont utilisées pour définir des fonctions d’une variable réelle.

Supposons que le terme général d’une série dépende d’un paramètre réel. Cela signifie que pour
chaque n ⩾ 1, on a une fonction

x 7→ an(x) .
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5.11. Séries dépendant d’un paramètre

Pour simplifier, on supposera que toutes ces fonctions sont définies sur le même intervalle an :
I → R.

On peut donc définir, formellement, la fonction f : I → R par

x 7→ f(x) :=
∑
n⩾1

an(x) .

Évidemment, on ne peut étudier cette fonction que sur les points x où la série qui définit f(x) est
convergente. Le domaine de f est donc

D(f) =
{
x ∈ I

∣∣∣ ∑
n⩾1

an(x) converge
}
.

Exemple 5.40. Considérons le terme général

an(x) = xn .

Pour tout n ⩾ 0, an est une fonction définie sur I = R. On remarque alors que f(x) =
∑

n⩾0 x
n

n’est autre que la série géométrique, où x joue le rôle de raison. On sait donc qu’elle converge si
et seulement si |x| < 1. On a donc D(f) =]− 1, 1[.

Il est intéressant de remarquer que pour x ∈ D(f), f(x) est en fait 1
1−x ! ⋄

Exemple 5.41. Si on considère

an(x) =
(x+ 3)n

n!
,

défini pour tout x ∈ R, utilisons le critère de l’Alembert pour étudier la convergence de la série

f(x) =
∑
n⩾0

(x+ 3)n

n!
.

On peut étudier la convergence de cette série, pour un x fixé, en étudiant

ρ(x) = lim
n→∞

∣∣∣an+1(x)

an(x)

∣∣∣ .
Or en développant,

ρ(x) = lim
n→∞

∣∣∣(x+ 3)n+1/(n+ 1)!

(x+ 3)n/n!

∣∣∣ = lim
n→∞

|x+ 3|
n+ 1

= 0 .

donc par le critère de d’Alembert, la série converge pour cette valeur de x, et donc f(x) est bien
définie en ce point. Puisque c’est vrai pour tout x ∈ R, on en déduit que D(f) = R. ⋄

Informel 5.42. Une fonction définie par une série est en général très difficile à étudier ! Si on
considère par exemple le terme général an(x) =

cos(9nx)
2n

, alors

f(x) =
∑
n⩾0

cos(9nx)

2n

est bien définie partout : D(f) = R. En effet,

0 ⩽ |an(x)| ⩽
1

2n
,

qui est le terme général d’une série géométrique de raison r = 1
2
. Cette fonction, étudiée par

Weierstrass au 19ème siècle, possède des propriétés très particulières : elle est continue partout,
mais dérivable nulle part (on définira ces termes plus tard dans le cours).
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