Chapitre 5

Séries numériques

5.1 Définitions et exemples
(ici, Video: v_series_intro_definition.mp4)

Une série, en analyse, est une somme infinie.

Dans ce chapitre, nous étudierons les séries numériques, qui ne sont rien d’autre que des sommes
infinies dans lesquelles on somme tous les termes d’une suite donnée (a,),>n,, @ partir du pre-
mier :

Apg + Qpy + Qpy + Qpy + ...

Le symbole utilisé pour représenter un telle somme est

o0
S an ou S an
n=ngo nzng

ou encore, puisque 1'indice est muet,

o0
Z ap, ou Z ag ,
k=no k>ng

que l'on lit “la somme de tous les a;, pour k allant de ny al'infini”, et on dit que son terme général
est ag.

I s’agit donc de définir rigoureusement ce que signifie “sommer une infinité de nombres”. Pour
simplifier un peu l’exposition, on supposera souvent que ny = 0 ou 1. Nous fixons donc une suite
(@n)n>0, €t commencgons a sommer un a un ses éléments, en commencant par le premier. Ceci
mene a définir les sommes successives obtenues :

Définition 5.1. Soit (a,),>¢ une suite de réels. On définit la suite (s,,),>0 ainsi :

Sp -— Qo
S1:=ag+ aq

So := ag + a1 + as

Spi=ap+a+ag+---+a,

On appelle (s,),>0 la suite des sommes partielles associée a (a,),>0. s, est la n-eme somme
partielle.
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5.1. Définitions et exemples

Quelle que soit la suite (a,,),>0, la suite des sommes partielles associée (s, ),>0 est toujours bien
définie. On donne alors un sens a la somme infinie des a,, en considérant la limite de la suite des
sommes partielles :

Définition 5.2. Soit (s,,),>0 la suite des sommes partielles associée a (ay,)n>0. Si (Sn)n>0 cONverge,
c’est-a-dire si la limite

s:= lim s,
n—oo
o0
existe et est finie, on dit que la série g a, converge, et que sa somme vaut s. On écrit :
n=0

oo
g ap = S
n=0

Dans les autres cas, on dit que la série diverge.

Lorsque lim s, = fo0, on écrit

n—oo
o0
E a, = +oo.
n=0

Exemple 5.3. (Suite constante) Soit (a,),>¢ la suite définie par a,, = ¢ pour toutn > 0, o1 ¢ € R est
une constante. La néme somme partielle est

Sp=ap+ay+---+a,
—_—

n+1 fois
=cn+1).
Ainsi,
400 sic>0,
lim s, = lim ¢(n+1) =<0 sic=0,

n—oo n—oo
—00 sic<0,

ce qui implique que la série } _ ., a, converge si et seulement si ¢ = 0, et dans ce cas
E a, =0
n=0
Lorsque ¢ # 0, la série diverge et
400 sic>0,
E Ap = .
"0 —0o0 sic<O0.
o

Ce dernier exemple a montré, sans surprise, qu'une somme infinie de nombres strictement posi-
tifs, tous égaux, est infinie.

Exemple 5.4. Soit (a,),>o définie par a,, = n. La somme partielle s,, est donc

S5, =0+1+2+3+4+---+n.
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On sait (lien vers la sectionm_elementaire_sommes_produits) que cette somme vaut

n(n+1)
Sn - 2 )

ce qui implique que s,, — co. Donc la série diverge :

1424344+ =) n=+4o0,
n=1

o

Méme si cela peut sembler contre-intuitif, il est possible de sommer une infinité de nombres non-
nuls, et d’obtenir une somme totale finie; nous avions déja rencontré ce phénomene dans 1'étude
de la série géométrique; celle-ci fournit notre premier exemple non-trivial de série convergente :
Exemple 5.5. La série de terme général a,, = 7", ot r € R est fixé, n’est autre que la série géomé-
trique de raison r :

o0
Zan:1+7’+r2+r3+--~
n=0
Sir =1, la néeme somme partielle est s,, = n + 1, qui diverge bien-stir. Si  # 1, on peut (lien vers
la sectionm_elementaire_sommes_produits) calculer

1 — Tn—i—l

sn:1+r+r2+r3+---+r":ﬁ,

et conclure :

diverge  sinon.

o0 .
Zrn B {converge si|r| <1,

n=0

De plus, dans le cas ot |r| < 1, 5, — 1, et donc

Par exemple,

Nous connaissons un autre cas de série convergente (de termes non-nuls), plus compliqué :
Exemple 5.6. Nous avons vu (lien vers la section m_suites_majorees_convergent) que la
série de terme général a,, =

n2’
—=1l+=+=+- converge.
k>1
En effet, nous avions montré que les sommes partielles
1 1 1
Snzl—f—?‘f—?‘l—""f‘ﬁ

forment une suite croissante et majorée, donc convergente.
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5.1. Définitions et exemples

L2 D0 usanneson

i

5.1.1 Divergence de la série harmonique

Au vu du premier exemple de la section précédente, on peut facilement construire des exemples
de séries divergentes, comme par exemple

I+1+4+14+1+ =+00

Considérons maintenant un exemple plus intéressant, et bien plus important, celui de la série
harmonique.

Théoréme 5.7. La série harmonique, de terme général a,, = -, est divergente :

i1—1+1+1+1+1+ = +00
fZn 2 3 4 5 B
*1 *% i + o0

En d’autres termes, si I'on fait un pas de longueur 1, puis un pas de longueur 3, puis un pas de
longueur £, et ainsi de suite (toujours vers la droite), alors on part a I'infini.

Preuve: Remarquons que la suite des sommes partielles associée a la suite a,, = L est strictement croissante :
Sn+1 > Sp. Pour montrer que s,, — oo, il suffit donc de trouver une sous-suite (s, )i telle que s,, — oc.

Considérons les indices qui sont des puissances de 2 :

So =891 =1+35 2

ss=sp=1+3+++7 +it+-+5>3-

8162324214-%—1—

Plus généralement, on peut montrer que pour tout entier k > 1,

>k:
Sok = — .

Comme g — oo lorsque k — oo, on conclut que sor — 0.
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Une autre preuve (trés semblable) de la divergence de la série harmonique : A stylish proof that... (Michael

Penn) (lien web) O
Nous venons de montrer que la suite partielle associée a la série harmonique,
LT S S
Sn — — — — e -,
2 3 4 n

tend vers I'infini : Cela signifie que quel que soit le seuil M > 0 que I'on fixe, aussi grand soit-il, il
existe toujours un indice N tel que s,, > M pour toutn > N.

BV B IR R T T T E L P T T PR P L P P TP TP PP

A

T LJ

Informel 5.8. La suite des sommes partielles de la série harmonique tend vers l'infini, mais tres
lentement... Par exemple, si dans I’animation ci-dessus on fixait M = 50, il faudrait que n soit au

moins -10*! pour voir qu’effectivement s,, > 50...

On pourra également lire les commentaires se trouvant ici (lien web).

5.1.2 Surl'importance de la définition de convergence pour une série

Exemple 5.9. Considérons a,, = (—1)", n > 0. Les sommes partielles sont alors

so=(-1)"=1

si=(-1)"+(-1)'=1-1=0

so= (1) 4+ (=) 4+ (-1 =1-1+1=1
ss=(-1)"+ (=)' + (-1 +(-1)'=1-1+1-1=0

Ainsi,

0 sinestimpair,
Sn = . .
1 sinestpair.

Donc s, ce qui signifie que la série

D) =1-1+1-1+1—1+1--

n=0

est divergente. o
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Informel 5.10. On serait peut-étre tenté de calculer la somme infinie du dernier exemple,
s=1—-1+1-14+1—1+1---

a I’aide d’opérations algébriques injustifiées.

Par exemple, on pourrait réorganiser les termes de la série par paquets de deux :

Mais une autre facon de réarranger donnerait

s=1+(-1+1)+(-14+1)+---=1
=0 =0

Ou alors, en multipliant la somme par 2,

2s=s+s=1—-1+1-14+1—-1+1—"---
+1—-1+1—-1+1—-1+4---
=1,

etdonc s = % (Voir aussi ici (lien web) pour une autre fagcon de formuler la méme absurdité.)

Les manipulations formelles faites sur cet exemple (insérer des parentheses, sommer terme a
terme) sont interdites, parce qu’elles s’effectuent sur une série divergente. Ceci montre que 'on
ne peut pas manipuler une série comme on manipule une somme contenant un nombre fini de
termes, et souligne I'importance de la définition de convergence que nous avons adoptée pour une
série (via les sommes partielles).

Dans la section suivante on montrera, entre autres, que pour les séries convergentes, les manipula-
tions usuelles sur les sommes finies sont autorisées.

5.2 Propriétés des séries convergentes

(ici, Video: v_series_proprietes.mp4)

5.2.1 Le terme général tend vers zéro

Intuitivement, il est clair que pour pouvoir sommer une infinité de nombres a,,, il faut que ceux-ci
deviennent toujours plus petits a mesure que n devient grand :

Lemme 16. Si Zn a,, converge, alors a,, — 0.

Preuve: Si la série converge, cela signifie que la suite des sommes partielles a une limite : s,, — s. On a donc

ap = (a1 +ag+ -+ +an-1+ay) — (a1 +az+-+an_1)

=Sn =Sn—1

=5n = Sn—1,
ceci implique que a,, - s —s = 0. O

Comme corollaire du lemme ci-dessus, on a un résultat pratique : si le terme général d'une série
ne tend pas vers zéro, alors cette série diverge.
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5.2. Propriétés des séries convergentes

n

143
Exemple 5.11. La série Z 2n+—n diverge. En effet, son terme général ne tend pas vers zéro

+3
n>1
puisque
. ) 143" . 3143
lim @, = lim ——— = lim ———
. 143
= lim ——— =

Informel 5.12. Attention : il ne suffit pas que a,, — 0 pour que ) a,, converge! Par exemple, la série
harmonique a son terme général qui tend vers zéro, a,, = % — 0; mais elle diverge.

Donc pour qu’une série converge, son terme général doit faire plus que juste “tendre vers zéro” :
il doit tendre vers zéro suffisamment vite.

5.2.2 Converger : un propriété asymptotique

La deuxiéme qualité importante peut étre formulée en disant que la convergence/divergence d'une
série est un propriété qui ne dépend pas d’un nombre fini de ses termes. En effet, si une série converge
(resp. diverge), alors on peut modifier un nombre arbitraire (mais fini) de termes, elle continuera a conver-
ger (resp. diverger).

Exemple 5.13. On sait que la série harmonique }_, < diverge, et que la série ), -5 converge.
Fixons un entier N, arbitrairement grand.

=

* Si on définit
sin < Ny,
sin = NU>

= O

alors ) a, diverge.
* Si on définit

. L sin< Ny,
n 1 .
nZ 51n2N0,

alors ) b, converge.

5.2.3 Sommes et multiplication par un scalaire

Finalement, donnons deux propriétés simples utilisées constamment dans la manipulation des
séries convergentes :
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5.2. Propriétés des séries convergentes

Proposition 7. Soient Z a,, et Z by, des séries convergentes.

1) Z(an + b,,) est convergente, et
S b = S+
2) Pour toute constante \ € R, Z Aa,, est convergente, et

S dw =AY e,
En particulier, pour toutes constantes o, 5 € R,

Z(aan—i-ﬂbn) :aZan—l—Ban

Preuve: Pour des suites (an)n>0, (bn)n>0, considérons les sommes partielles associées, notées respective-
ment (S, )n>0 et (s),)n=0. On a donc, par hypothese, existence des limites

lim s, = g ak
n—oo

k>0
lim s g b .
n—oo

k>0

Soit (s)))n>0 la suite des sommes partielles associées a la suite (a,, + by)n>0. Pour tout n,

n

Sg = Z(ak+bk) = Sn—i-sgl
k=0

(On a fait une opération autorisée puisque les deux sommes sont finies!) Etant la somme de deux suites
convergentes, s;, est également convergente, et de plus sa somme est

EET "
Z(ak +b) = nh—>Holo sy

k=0
— 1y —
= g n ¥ 0n) =
hIn Sp + hm s
usTh
k>0 k>0
L’autre propriété se démontre de la méme facon. O
Exemple 5.14. Dans Z 5 + 522" on reconnait deux séries géométriques Z 1 et Z el
n=0 2n 7” / ' n=0 2n n=0 7” ,

toutes deux convergentes puisque de raisons |r| < 1. On peut donc utiliser la proposition, et en
déduire que notre série de départ converge. De plus, sa somme vaut

Sz 5 S m o (F)

n=0 n=0 n=>0
1 1
=3 +5 -
R ey
89
9
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5.3 Le critere de comparaison

(ici, Video: v_series_critere_comparaison.mp4)

Le critere le plus utilisé dans I'étude des séries. Il permet, lorsqu’il s’applique, d’étudier la conver-
gence/divergence d'une série donnée, en la comparant avec une autre série donc la conver-
gence/divergence est connue.

Théoreme 5.15. Soient (a,) et (b,) deux suites telles que
0<a, <b,

pour tout n suffisamment grand.

1) Si E by, converge, alors E a,, converge aussi.
n

2) Si Zan = +o0, alors an = +o00.

Preuve: Supposons pour commencer que 0 < a, < b, pour tout n > 1 (au lieu de juste “pour tout n
suffisamment grand”). Définissons les sommes partielles :

n n
/
sn::E ar , sn::g b .
k=1 k=1

Par définition, 2@1 an converge si et seulement si s,, est convergente, et 2@1 by, converge si et seulement
si s}, est convergente.
Puisque 0 < a,, < b, pour tout n, on a aussi que

0<s, <s Vn>1.

/
n
De plus, comme tous les termes que leurs sommes contiennent sont positifs, s,, et s}, sont des suites crois-

santes. En effet, on peut écrire, pour toutn > 1,

Sptr1—Sp=(a1+ -+ an+apnt1) — (a1 + -+ ayn)
= an+1 > 07
et donc s, 41 > sy,. (Pareil avec s/,.)

1) Si ), bn converge, alors il existe s’ € R tel que s;, — s'. Comme s;, est croissante, on a s;, < s/,
et donc aussi s, < s'. Donc s, est croissante et majorée, donc aussi convergente, ce qui signifie que

Y n>1 @n CONVeErge.

2) Si) - an = +o0,c’estque s, — oo, et donc comme sy, = Sy pour toutn > 1, onaaussi que sj, — oo,
c'est-a-dire ) |, -, b, = +oc.

Maintenant, si on a 0 < a, < b, seulement a partir d'un certain ng, on peut adapter l’argument sans

difficulté, en redéfinissant
n n
Sy = E ay s = E by .

k=ng k=no

Exemple 5.16. Considérons la série

1
Z 2" +n +sin(n)

n=>1
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5.4. Le critére de Leibniz

Pour toutn > 1, n +sin(n) > 1 — 1 = 0. On peut donc comparer :

< on ! : < 2%
: +ni— sin(n) L

=:an

Puisque ., b, est une série géométrique de raison r = 3 < 1, elle converge. Donc 3 ., a,

converge aussi. o
Exemple 5.17. Considérons
1
np’

n>1

ou p est un réel fixé.
* On sait déja que dans le cas p = 2,
ﬁ converge.
n>1

Or si on prend n'importe quel p > 2, alors n? > n? (pour tout n > 1), et donc

1
0< < — pour toutn > 1.
n

~—~
bﬂ,

{z1-

an

Donc par le critére de comparaison, Zn>1 - converge aussi.

* D’autre part, on sait que la série harmonique

1

n=1
Or si on prend n'importe quel p < 1, alors n” < n (pour tout n > 1), et donc
1 1
0< - < — pour toutn > 1.
n np
= =b

Donc par le critere de comparaison, ), ., - = +0o0.

On a donc montré que

n? convergesip > 2.

Z 1 divergesip < 1,
n=>1

Nous verrons plus loin ce qu’il en est des valeurs intermédiaires p €]1, 2|. o

5.4 Le critére de Leibniz

(ici, Video: v_series_critere_alternee.mp4)

Certaines séries tres particulieres ont un terme général tel que le signe d"un terme est opposé au
signe du terme suivant; on appelle ces séries alternées. Sous certaines conditions additionnelles,
on peut garantir que ces séries convergent :
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5.4. Le critére de Leibniz

Théoreme 5.18. (Critere de Leibniz pour les séries alternées) Soit a,, = (—1)"x,,, oit
1) z, 20,

2) x,, est décroissante, et

3) x, — 0.
Alors ) oGy = Tg — 1 + Tg — T3 + T4 — - - - CONVErGE.
4+ Xo
+ X2

o s‘r;, s.“'_ \\

: Sy Sa 'so
&'—"’//

‘-"-1

Preuve: Soit (xy,),>0 une suite positive décroissante et soit s,, la suite des sommes partielles associée a la
série Y, o(=1)"xy

S0 = Xo
S1 =Xy — X1
So =g — T + X

§3 =To— X1+ T2 — T3

Remarquons (voir I'image ci-dessus) que
51 <83 <85 < 00086 K 54 X 52 < S0
Considérons donc les sous-suites sy, et so;11. Puisque (sgx) est décroissante et minorée par si, la limite
Spairs = lim sgp  existe.

k—o0

Puisque (s2x+1) est croissante et majorée par s, la limite
Simpairs = lim S2k+1 existe.
k—oo

Mais comme [sor 1 — s2x| = |T2r41] — 0, 0N @ Spairs = Simpairs- O

Exemple 5.19. La série harmonique alternée est définie par

Z(—1)n+1_1 1+1 1+1
n 2 3 4 5

n>1

Elle s’obtient simplement en changeant le signe de tous les indices pairs de la série harmonique.
Comme on peut écrire cette série sous la forme

(_1 n+1

e DL

n=>1 n=1

ouzr, = % est positif, décroissant, et tend vers zéro, on conclut par le théoreme du dessus qu’elle
converge. (On verra plus tard que sa somme vaut log(2)). o
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Exemple 5.20. Considérons la série
sin(nf)
n+1

n>=0

Puisque sin(nf) = 0 dés que n est pair, cette série est en fait

sin(nf) sin((2k +1)%)
2 n+1 =2 2k +2

n=>0 k>0

Mais maintenant, sin((2k 4+ 1)5) = (—1)¥, et donc

sin(ng) (—1)*
Z n+1 Z 2k + 2

n=0 k>0

Puisque zy, := ﬁ est positif, décroissant, et tend vers zéro, cette série converge. o

5.5 Séries téléscopiques

Considérons une série ) |, a, dans laquelle le terme général a,, est une différence,

n>1

Ap = Tp, — Tp1 Vn>1.

ol (z,,)n>0 est une suite fixée. On appelle les séries de ce type des séries téléscopiques.

En effet, on remarque que la n-eme somme partielle associée a > -, a,, peut se calculer exacte-
ment, puisque en réarrangeant les termes, beaucoup de paires se téléscopent :

sn:a1+a2+a3+---+an_1+an

(l’l—l’o)+(1'2—1'1)+($3—£L'2)+"‘+($n—$n,1)

=—xo+ (11 — 1)+ (B2 —22) + - 4+ (Tp1 — Tpo1) +24,
—_—— —— —_——

=Ty — Xo .

On conclut de la que si la suite z,, posséde une limite, z,, — L, alors la série 2@1 a, converge. De
plus, sa somme vaut

lim s, = lim (z,, — ) = L — 2.
n—o0 n—o0

Exemple 5.21. La série téléscopique

Z(COS(\/LE) — cos( 71171))

n=2

converge puisque d,, = cos(—=) — 1, et sa somme vaut

Z(cos(\%) - cos(\/nlfl)) =1—cos(1).

n=2
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n nP

Exemple 5.22. La série

converge puisque

Or si on regarde de plus pres, on peut la voir comme une série téléscopique, puisque

1 1 1

nn+1) n n+1l

(On verra plus tard comment faire ce genre de décomposition de fagon plus systématique, appelée
décomposition en éléments simples.) La n-eme somme partielle peut donc s’écrire

Sp=a1+ a2 +az+ -+ ap_1+an

(-2 G )+ )

oll on a pu “téléscoper” les termes 2 a 2. On a donc que

1 :
=Y

n=1

5.6 Séries >

(ici, Video: v_series_np.mp4)

Dans cette section, on regarde de plus pres les séries de la forme

1

np’
n=1

ol p est un réel fixé. On a déja traité les cas p = 1 (série harmonique, divergente) et p = 2 (conver-

gente), et on en a déduit, par comparaison, les cas p < 1 et p > 2. Ici on complete cette analyse, en
particulier en traitant les valeurs intermédiaires 1 < p < 2.

Théoreme 5.23. Soit p € R. Alors

Z 1 |converge sip>1,
o | = oo sip< 1.

Ce résultat montre a quel point la convergence/divergence d"une série peut étre sensible au com-
portement de ses coefficients :

[e.o]

1
E —— < 00
17,1.000001 '

n=1
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5.6. Séries > |

'anP

alors que

[e. 9]
> o

oo = 00

1,0-999999

n=1

Preuve: Puisque les autres cas ont déja été traités, considérons p €]1,2[ (méme si I'argument ci-dessous
fonctionne pour tout p > 1). Comme s, = 1+ 2% 4t # est monotone croissante, il suffit de mon-
trer qu’elle est majorée pour en déduire qu’elle converge. Et pour montrer qu’elle est majorée, il suffit
de montrer qu’une sous-suite quelconque est majorée (exercice). Pour ce faire, on considere la sous-suite
Sok_1. L'idée va étre de majorer cette suite, en la comparant a la somme partielle d"une série géométrique
convergente.

Pourk=1,ona

Pour k = 2, on peut majorer

1 1
822_1—174—27"‘37

1
235
<1+ (3
Pour k = 3,
S93_1 = 1 +2%+3%+4%+'--+7%
——
<235 <4z
2
<1+(3%) + (%)
Pour k =4,

_ 1 1 1 1 1 1
su 1=t typtst ottt
———’

<2z <y <Bgr
<1+ +(3)+ (3)]
Commep > 1, onaz%, < 1, et donc pour tout k,
sy <1+ (F)+ 3+ @)+ + (F)
<SLHE)HE ) )T

le reste de la série

O

Dans certaines séries, on pourra parfois identifier dans le terme général a,, une contribution do-
minante de la forme -, ce qui pourra donner des idées quant a la convergence/divergence de la
série.

Exemple 5.24. Considérons la série

Gardons la contribution venant uniquement du “n*”. Comme 7 > 0, on peut majorer le terme

général comme suit :
1 < 1 11

Og S - =
VAR +7 © And 2032
—_———

=an

=:b,
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5.7. Le critere de la limite du quotient

Par leltheoreme la série ) ., - converge, puisqu’elle correspond au cas p = 3/ 2 > 1. Donc
> _n>1 3 3z converge aussi, et par le critere de comparaison, on conclut que ) -, \/W converge.
o

Exemple 5.25. Considérons la série
e
e dn? — 1

On remarque dans le terme général la présence d’un comportement du type - ; on peut I'extraire
en mettant le n? en évidence au dénominateur, et en majorant le reste :

1 1 1 1
- - - < —.
dn?—1 n24-— L 7 3p2
(En effet, 4 — & > 3 pour tout n > 1.) Mais puisque la série Y 23 = 3., -3 converge (car
p=2>1)le critere de comparaison 1mp11que que Y., -2 converge. o

5.7 Le critere de la limite du quotient

(ici, Video: v_series_critere_limite_quotient .mp4)

Théoreme 5.26. Soient (ay,) et (b,,) deux suites. Supposons que a,, > 0 et b, > 0 pour tout n suffisamment
grand, et que
o= lim 2 existe.

n—oo n

Sia > 0, alors soit ) ay et b, convergent toutes les deux, soit elles divergent toutes les deux.

Preuve: Si le quotient £ tend vers o > 0, cela signifie qu’il est loin de zéro pour tous les indices n suffisam-
ment grands. Plus prec1sement prenons ¢ := «/2. Alors il existe N tel que [§* — af < € pour toutn > N,
c’est-a-dire que

an 3a

=a—e¢< —<at+e=— Vn > N

0<
by, 2

| e

qui donne

3
0<%bn<an<§bn Vn > N

Le critere de comparaison implique quesi ) _,, a,, converge, > . b, converge aussi, etsi ), a, diverge alors
Zn b, diverge aussi, et vice versa. O

Le théoreme ci-dessus est tres utile lorsqu’on a un terme général dans lequel on peut identifier un
terme qui doit dominer, mais pour lequel aucune comparaison simple ne se présente.

1
)

n=3

Exemple 5.27. Considérons

“ 31/

La presence du , qui est le terme dominant dans le dénominateur du terme général a,, =
m, suggere de considérer b, = # En effet, a,, et b, sont tous deux positifs pour n suffisam-

ment grand, et
3
Ay n
a = hm—— lim ——=1>0.

n—oo b, n—oon3 —5n — 1

Par le théoreme, la série ) a, converge. Remarquons pourtant que a,, > b, pour toutn > 2! o
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5.8. Séries absolument convergentes

Exemple 5.28. Considérons la série

St

n=1

Remarquons que a,, = sin( > 0 pour tout n suffisamment grand Si on se souvient du résultat

2+1)

qui dit que si x,, — 0, alors M — 1, cela suggere de poser b, = > ; on a alors que
(3
o sin(T)
a= lim — = hm++1:1>0.
n—o0 Oy, n—oo 21
Puisque ) b, = 3, 27 converge (son terme général étant < 2), on conclut que Y, a,
converge aussi. o

5.8 Séries absolument convergentes

(ici, Video: v_series_absolument_conv.mp4)

Définition 5.29. Si Z |a,| converge, on dit que Z a, est absolument convergente.

n n

Exemple 5.30. La série

est convergente (car c’est une série alternée satisfaisant au critere de Leibniz), mais elle est aussi
absolument convergente, car
T (="

2
n
n=1

1
—
n
n>1

qui est convergente (p = 2 > 1). Donc l'alternance de signes, dans la série de départ, n’est pas
essentielle pour garantir sa convergence. o

Exemple 5.31. La série harmonique alternée est convergente, comme on sait, mais elle n’est pas
absolument convergente, car en prenant la valeur absolue de chacun de ses termes on obtient

2 ->

n>1 n>1

( n+1

la série harmonique, qui est divergente. Donc la série harmonique alternée a “besoin” de l'alter-
nance de ses signes pour pouvoir converger. o

Ce dernier exemple montre qu'une série peut étre convergente sans étre absolument convergente.
D’autre part, on a le résultat important suivant, qui montre que la notion de convergence absolue
est plus forte que celle de convergence :

Théoréme 5.32. Si Z a,, converge absolument, alors elle converge.

n

Donc I'ensemble des séries absolument convergentes forme un sous-ensemble de 1’ensemble des
séries convergentes :
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5.9. Le critére de d’Alembert

Series convergeakes

séries o beolument com vw{z s

Preuve: Définissons

Spi=a1+ - +ap

Sp = lai| 4+ -+ |an] -

Comme ), a, est absolument convergente, la suite 5,, converge, ce qui implique que c’est aussi une suite
de Cauchy. Or pour tout n > m, par l'inégalité triangulaire,

|5n - Sm| = ‘am+1 + - +an‘
<ampr] + -+ + |an]
=Sp — Sm
=[5, — 5w -
(Dans la derniere ligne, on a utilisé le fait que s,, est croissante.) Fixons ¢ > 0. Comme (5,,) est une suite
de Cauchy, il existe N tel que |S,, — S| < € pour tous n,m > N. Par I'inégalité ci-dessus, ceci implique

que |sp, — sm| < € pour tout m,n > N. On a donc montré que (s,) est une suite de Cauchy, et donc elle
converge : Zn a, est convergente. ]

Le théoreme peut parfois étre utile pour I’étude de la convergence (habituelle) d"une série :
Exemple 5.33. Etudions la convergence de la série

Z 3sin(n) — 5 cos(n?)
=~ 2" +/n

Le numérateur contient des parties oscillantes qui compliquent I'étude de la convergence. Pour-
tant, on peut majorer sa valeur absolue,

13sin(n) — 5cos(n?)] <3+5=8,

et obtenir
3sin(n) — 5 cos(n?) 8

2 +\/n = on

Comme Y~ b, =8, 5= converge (série géométrique de raison r = 3), le critere de comparaison

implique que ), |a,| converge. Donc )  a, converge absolument, et par le théoréme ci-dessus,
ceci implique que ), a, converge. o

=:b,.

Dans les deux prochaines sections, nous verrons deux criteres trés utiles qui garantissent la conver-
gence absolue (et donc la convergence) d’une série.

5.9 Le critére de d’Alembert

(ici, Video: v_series_critere_quotient.mp4)
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5.9. Le critére de d’Alembert

Théoreme 5.34. Soit (a,,) une suite pour laquelle la limite

Ap1

p = lim
n—ool Qy,

existe, ou est +oo.
1) Sip < 1,alors ) a, converge absolument (donc converge).

2) Sip>1,alors ) a, diverge.

Preuve: La preuve commence de la méme fagon que celle pour le critere de 1’Alembert pour les suites :

1) Si p < 1, on sait qu'il existe ¢ > 0 et un entier N tel que

Intll 1 ¢ VYnxN.
an
On a donc, pour toutn > N,
lan| < (1 —¢€)|an—1|
<(1- 5)2‘%1—2‘
<.
<1 —e)" Nay| =:cn.

Mais comme ¢, est, a une constante pres, le terme général d"une série géométrique (de raisonr = 1—¢ < 1),
Z .. ) PN . 00 .

la série ) ° v ¢, converge. Par le critere de comparaison, ) ° v, |a,| converge aussi, et donc ) ay,

converge absolument.

2) On a déja vu (Critere de d’Alembert pour les suites) que p > 1 implique que |a,| — oo, et donc a,, ne
tend pas vers zéro, ce qui implique que ), a, diverge. O

Exemple 5.35. Considérons

(o)
2

Comme une comparaison avec une série plus simple n’est pas immédiatement facile, on peut

calculer
(o)t

T (+1)! | . _
R E T ey

Ak+1
Qg

— 1
p=Jim

Par le théoreme, la série est absolument convergente, et donc convergente. o
Exemple 5.36. Considérons la série

On a

(n+ 1)1 (2n)!
nooo  nB3 (2(n+41))!

~ lim (n+1)3
n—00 (2n + 2) (2n + 1)

= +00.
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5.10. Le critere de Cauchy

Donc la série est divergente. De plus, puisque tous ses termes sont positifs, on peut écrire
(n1)?
S
!
= (2n)!
o
Le théoreme ci-dessus ne dit rien sur ce qui se passe lorsque p = 1, ce qui fait qu’il y a beaucoup

de cas ot il est inefficace pour étudier une série. Par exemple, on connait bien les séries du type
Z L et pourtant, pour tout p > 0,

n nP’

. 1 1)p
pzlima+1 :hmM
n—ool @y, n—00 1/np
n? 1

donc le critere ne permet de traiter aucune valeur de p.

Donc lorsque p = 1, une autre méthode doit étre employée pour étudier la convergence/divergence
de la série.

5.10 Le critére de Cauchy

(ici, Video: v_series_critere_Cauchy.mp4)

Théoreme 5.37. Soit (a,,) une suite réelle, telle que la limite

o:= lim {/|a,|

n—oo

est soit finie, soit +o0.
1) Sio < 1,alors " a, converge absolument (et donc converge).

2) Sio > 1,alors ) a, diverge.

Preuve: 1) Supposons o < 1. Alors il existe 0 < ¢ < 1 et un entier N tel que

Vi <1—¢ Vn > N.

On a donc que
lan| < (1 —¢e)" Vn > N,

Par le critere de comparaison, comme la série associée a b,, := (1 — ¢)" converge (géométrique de raison
r =1—¢), celle associée a |a,| converge aussi.

2) Semblable, mais dans ce cas on montre que |a,| — oo, et donc a,, ne tend pas vers zéro, et donc la série
>, an diverge. O

Exemple 5.38. La série
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5.11. Séries dépendant d’un parametre

converge, puisque

o= lim {/]a,| = lim (1 — )

n—00 n—oo

&

Le critére de Cauchy existe en fait dans une forme un peu plus forte, dans laquelle la définition
de o est légerement différente :
o = limsup {/|an|,

n—0o0

mais ot la conclusion est la méme : si 0 < 1 alors la série converge absolument, et si o > 1 alors
la série diverge.

L’avantage de cette deuxieme version est que 1'on peut étudier certaines séries pour lesquelles
la limite qui définit o dans la premiere définition n’existe pas, alors qu’elle possede une limite
supérieure.

Exemple 5.39. Considérons la série

Remarquons qu’ici,

qui n’a pas de limite lorsque n — oco. Pourtant,

lim sup v/|a,| =

n—oo

1 3
- <1
4 4 ’

[\Dlr—t

et donc par la nouvelle version du critére, la série converge.

Remarquons qu’on aurait aussi simplement pu écrire

jan| = |5+ 2(=D"" < G+ D" = (

=~

).

Lo . ST . _ 3
Ainsi, par comparaison avec la série géométrique de raison r = 7, on conclut que >, Gy, cOnverge
absolument. o

5.11 Séries dépendant d’un parametre

Souvent, les séries sont utilisées pour définir des fonctions d’une variable réelle.

Supposons que le terme général d'une série dépende d'un parameétre réel. Cela signifie que pour
chaque n > 1, on a une fonction
T a,(z).
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5.11. Séries dépendant d’un parametre

Pour simplifier, on supposera que toutes ces fonctions sont définies sur le méme intervalle a,, :
I — R

On peut donc définir, formellement, la fonction f : I — R par
x = f(x):= Z an(x).
n=>1

Evidemment, on ne peut étudier cette fonction que sur les points = oi1 la série qui définit f(x) est
convergente. Le domaine de f est donc

D(f) = {ac € I’ Zan(x) converge} :
n=1
Exemple 5.40. Considérons le terme général
ap(x) =",

Pour tout n > 0, a, est une fonction définie sur / = R. On remarque alors que f(z) = >_ . 2"
n’est autre que la série géométrique, ot x joue le role de raison. On sait donc qu’elle converge si
et seulement si |z| < 1. Ona donc D(f) =] — 1, 1].

Il est intéressant de remarquer que pour z € D(f), f(z) est en fait ;! o
Exemple 5.41. Si on considére
(x4 3)"
an(z) = o

défini pour tout x € R, utilisons le critere de 1I’Alembert pour étudier la convergence de la série
(x4 3)"
n=0

On peut étudier la convergence de cette série, pour un x fixé, en étudiant

T an—i-l(x)
Or en développant,
n+1 |
p(z) = lim (z+3) /(n+1).‘_ im —|$+3|:O

n—00 (x +3)"/n! C nooo n41

donc par le critere de d’Alembert, la série converge pour cette valeur de z, et donc f(z) est bien
définie en ce point. Puisque c’est vrai pour tout z € R, on en déduit que D(f) = R. o

Informel 5.42. Une fonction définie par une série est en général tres difficile a étudier! Si on
considere par exemple le terme général a,, () = <=0"2)

)
o alors
cos(9"x)
f@)=) ——
n=0

est bien définie partout : D(f) = R. En effet,

0 < Jan(®)] < 57
qui est le terme général d'une série géométrique de raison r = 1. Cette fonction, étudiée par
Weierstrass au 19éme siecle, posséde des propriétés tres particulieres : elle est continue partout,
mais dérivable nulle part (on définira ces termes plus tard dans le cours).
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