Chapitre 2

Notions élémentaires

2.1 Sommes et produits

2.1.1 Sommes finies
(ici, Video: v_elementaire_sommes.mp4)

Lorsqu’on considére des sommes de beaucoup de nombres, on a avantage a utiliser une notation
compacte, qui évite d’écrire explicitement tous les termes de la somme :

N
JZ1+$2+"-—|—$NEZ$k.
k=1

On lit ce dernier symbole “somme des xy, pour k allant de 1 @ N”, et on appelle z;, le terme général
de la somme.

Notons que l'indice £ utilisé ci-dessus est muet, dans le sens ot il n’est utilisé “temporairement”
que pour nommer 'entier sur lequel on somme. On pourrait donc le nommer de fagon arbitraire,
cela ne change pas la valeur de la somme :

N N N
E T = E T = E T .
k=1 j=1 n=1

Lemme 2. La somme satisfait aux propriétés suivantes.

N N
* Pour toute constante \ € R, Z(Aak) = ) Z Q.

k=1 k=1

Il existe certains cas ol le terme général est assez simple pour que la valeur de la somme puisse
étre calculée explicitement en fonction de V :

Exemple 2.1. Si le terme général est constant, z;, = C' (pour tout k), alors

N
ka:C+C+C+~--+C:0N.
k=1 e

N fois
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2.1. Sommes et produits

Exemple 2.2. Si z;, = k, on montrera plus tard par récurrence que

N(N +1)

N
o =14243+--+N= 5

k=1
Exemple 2.3. La somme harmonique a pour terme général z;, = 1 :

i1—1+1+1+1+ +l
kzlk_ 2 3 4 N’

On ne peut hélas pas la calculer exactement en fonction de NV, mais nous verrons plus tard qu’elle
se comporte, lorsque N est grand, essentiellement comme log N. o

Il y a un autre type de sommes que 1’on sait sommer exactement, et qui sera d'importance capitale
pour la suite :

2.1.2 Les sommes géométriques

Soit r € R un réel fixé, appelé raison. La somme de terme général z;, = r*, pour k allantde 0 a N,

N
Sy :=ZTk=1+r+r2+r3+---+rN,
k=0

est appelée somme géométrique.

On peut calculer Sy exactement, quelle que soit la valeur de N. En effet, sir = 1, alors Sy = N +1
(puisque la somme Sy contient NV + 1 termes constants, égaux a 1). Pour les autres valeurs de r :

Lemme 3. Sir # 1, alors
1—-TN+1
Sy = ———
1—7r

Preuve: Remarquons que Sy = Sy_1 + rV, et que

Sy=1+r+r2+r3+- 4oV
=14rQ4+r+r2+. 4N
=1+7rSy_1
:1—|—7“(SN—7‘N).

Cette égalité permet d’écrire (1 — r)Sy = 1 — rV*1 et puisqu’on suppose que r # 1, on peut diviser des
1—pN+1

deux cotés par 1 — r, ce qui donne bien Sy = 5~ O
Exemple 2.4. On peut par exemple calculer,
7100 L 7100 | 7102 |y 1000 _ 7100 (7 47y 72 L 4 7900)
900
— 7100 Z 7k’
k=0
_ oo 1 _ 7901
1-7
71001 __ 7100
e T
o
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2.2. Fonctions

2.1.3 Produits finis

Il existe aussi un symbole utile pour le produit d"un nombre fini de réels :

N

al-ag-ag---aNEHak,
k=1

qui se lit “produit des ay, pour k allant de 1 a N.

2.2 Fonctions

(ici, Video: v_fonctions_ensemble_image.mp4)

2.2.1 Notion de fonction

Dans cette section, on rappelle quelques définitions élémentaires relatives a la notion de fonction.
Méme si dans ce cours on s’intéressera surtout a des fonctions réelles d'une variable réelle, ce que
I'on présente ici est trés général et s’applique a des situations trés diverses, comme par exemple
I'étude des applications linéaires en algebre linéaire.

Définition 2.5. Soient A, B deux ensembles quelconques non-vides. Une fonction de A dans B,
f:A—= B,

est une regle qui associe a chaque élément z € A un (et un seul) élément y € B, appelé I'image de
z (par f), et on écrit

y=f(z).

On dit alors que z est une préimage (ou un antécédent) de y.

Lorsque x € A est associé a y € B, on pourra penser a cette association comme a une “fleche de x
vers y”. En termes de fleches, une fonction de A dans B est donc bien définie une fois que 'on a,
pour chaque = € A, exactement une fleche reliant ce = a un (et un seul) y € B. En particulier, il ne
peut pas y avoir deux fleches sortant d"un z.

Pour des raisons évidentes, A est parfois appelé I’ensemble de départ, et B 'ensemble d’arrivée.
Pour bien indiquer 1’ensemble de départ et d’arrivée d"une fonction, on écrit

f:A—>B (2.1)
r—y=f(z). (2.2)
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2.2. Fonctions

Exemple 2.6. Considérons A = Z, B = {>, &, #, #}, et définissons la fonction f : A — B comme
suit : pour x € A4,

% six <17,

d si —17<x<-—16,

& si—16<x<1,

¢ siz>1.

fx) =

Ici, % et 4 possédent chacun une infinité de préimages, # possede 18 préimages, et & ne possede
aucune préimage. o

2.2.2 Ensemble image

Il est naturel de considérer, pour commencer I’étude d"une fonction, de déterminer quels sont les
éléments de I'ensemble d’arrivée qui possédent au moins une préimage :

Définition 2.7. L'ensemble image de f : A — B est défini par

Im(f) :=={y € B : 3z € Atel que f(z) =y} .

A B
Im()

Par la définition de fonction, une fleche sort de chaque = € A; mais tous les y € B ne sont pas
forcément atteints par une fleche. L'ensemble image est donc constitué des éléments de 1’ensemble
d’arrivée qui sont atteints par au moins une fleche. On peut imaginer Im( f) obtenu en “balayant”
tout A avec la variable z, et en observant tous les y = f(x) € B obtenus.

Exemple 2.8. Soit A = {1,2,3,4}, B={A,I', U}, et f : A — B la fonction définie par :
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2.2.3 Surjection
(ici, Video: v_fonctions_surjection.mp4)

Par définition, 'ensemble image d"une fonction f : A — B est un sous-ensemble de B, Im(f) C B,
et il est naturel de considérer les fonctions pour lesquelles il coincide exactement avec B :

Définition 2.9. f : A — B estsurjective si Im(f) = B, c’est-a-dire si chaque élément de I'ensemble
d’arrivée posseéde au moins une préimage.

, Im(f)
? . i

A~ ——a

Informel 2.10. Une fonction est surjective si chaque élément de 1’ensemble d’arrivée est atteint
par au moins une fleche; en d’autres termes, si les fleches qui partent de A “remplissent bien”
tout 'ensemble d’arrivée.

Exemple 2.11. La fonction

f:Z—7Z
r— flx)=x+1

est surjective. En effet, prenons un y € Z quelconque. Si on consideére z := y — 1, alors

fla)=z+1=(y—-1)+1=y,

donc z est antécédent de y, et donc y € Im(f). o

Exemple 2.12. Soit A I’ensemble des étudiant.e.s dans 'auditoire, et soit B = N = {0,1,2,3,...}.
Considérons

f:A—B

z i f(z),

ou f(z) est le nombre de freres et soeurs de x. Pour trouver Im(f), on peut procéder comme suit :
pour tout y € B, on pose la question : “Qui possede exactement y freres et soeurs?” Si au moins
une main se léve, c’est que y € Im(f). Dés qu’on a un y pour lequel aucune main se leve, c’est
que f n’est pas surjective. Pour s’assurer facilement que f n’est effectivement pas surjective, on
peut simplement poser la question : “Est-ce que quelqu'un a plus de 100 fréres et soeurs?” Si
personne ne leve la main, c’est que Im(f) C {0,1,2,3,...,99,100}. (S5i on sonde "auditoire, on
observe probablement quelque chose comme Im(f) = {0,1,2,3,4,5}.) o

Toute fonction peut étre transformée en une fonction surjective, en modifiant simplement son
ensemble d’arrivée. En effet, si

f:A—B
x> f(z)
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2.2. Fonctions

n’est pas surjective, c’est que son ensemble d’arrivée B est “trop grand” : Im(f) est un sous-
ensemble stricte de B. On peut alors retirer les éléments de B qui ne sont pas dans 1'image, et
obtenir une fonction surjective. Plus précisément,

f: A= Im(f)
z = f(z)
est surjective.
Exemple 2.13. La fonction
fN—N
T 2%

n’est pas surjective, puisque si y € N est impair, il ne posséde pas de préimage. Ici, Im(f) = Npairs,
I'ensemble de tous les entiers positifs pairs. En restreignant son ensemble d’arrivée a Im(f), on
obtient

f:N%Npairs
T 2x,

qui est surjective. o

2.24 Injection

(ici, Video: v_fonctions_injection.mp4)

Une deuxieme chose naturelle a considérer, pour une fonction donnée, est de savoir si celle-ci
sépare les points, c’est-a-dire si des points différents, dans ’ensemble de départ, ont des images
différentes :

Définition 2.14. f : A — B est injective si x # 2’ implique f(z) # f(2').

Informel 2.15. Si la fonction est injective, des fleches qui partent de points différents doivent
arriver en des points différents!

Exemple 2.16. Considérons

f:Z—N

x e xl.

Puisque f(—2) =4 et f(2) =4, f n’est pas injective.
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2.2. Fonctions

&

Une caractérisation équivalente de l'injectivité, plus commode a manipuler dans la pratique, est
la suivante : f est injective si f(z) = f(2') implique z = 2.
Exemple 2.17. Montrons que
f N=Q
22
T
est injective. Pour ce faire, prenons deux éléments z,2’ € N, et supposons que f(z) = f(z'),
c’est-a-dire

2
x? x

241 2%+1
Quelques manipulations montrent que cette derniére identité est équivalente a

?—2"=0 & (—2) e+2)=0,

qui n’est vérifiée que si au moins une des parentheses est nulle. Or la premiere est nulle si x = 2/,
et puisque z, 2’ € N, la deuxiéme ne peut s’annuler que si x = 2’ = 0. Dans tous les cas, on a bien
montré que f(x) = f(2') implique x = 2/, donc f est injective. o

2.2.5 Bijection

(ici, Video: v_fonctions_bijection.mp4)

Voyons ce qui se passe lorsqu’une fonction possede en méme temps les deux propriétés intro-
duites dans les sections précédentes.

Définition 2.18. Une fonction f : A — B est bijective si elle est a la fois injective et surjective.

L’intérét d'une fonction bijective est qu'on peut l'inverser, ce qui signifie revenir de 1’ensemble
image a I’ensemble de départ, sans ambiguité.

En effet, supposons que f : A — B est bijective, et fixons un élément quelconque de 1’ensemble
d’arrivée, y € B.

1) Comme f est surjective, y possede au moins une préimage.
2) Comme f est injective, y possede au plus une préimage.
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2.3. Cas des fonctions réelles

On en déduit que y possede exactement une préimage dans 1’'ensemble de départ : on la note f~(y).
Avoir associé a touty € B un unique élément f~*(y) € A signifie que nous avons défini une fonction
de B dans A. Puisque cette fonction permet d’obtenir 'unique préimage de chaque élément de B,
on 'appelle la réciproque de f :

ff':B—= A
y= [
Par définition, la réciproque permet de récupérer la préimage :

fHfx) =2 Ve e A.

Mais aussi,
fF' W)=y  VyeB.

Remarque 2.19. L'utilisation du symbole “f~'”, pour la réciproque, est largement répandue, et
nous l'utiliserons, mais elle peut préter a confusion. En effet, pour des fonctions numériques,
/7(y) ne doit en aucun cas étre confondu avec f(y) !, qui signifie ﬁ ! o

Exemple 2.20. Montrons que la fonction

f:Q—=Q
5

est bijective. (On utilise des couleurs uniquement pour distinguer les ensembles de départ et
d’arrivée.)

* Soient z, 2’ € Q.On a

donc f est injective.

* Soity € Q. Montrons que y posséde une préimage, a savoirunz € Q tel quey = f(z) = %2
En effet, on peut simplement isoler x dans “y = %’5” et trouver x = 3y+5. Comme 3y+5 € Q,
on a bien trouvé une préimage pour y. Donc f est surjective.

Maintenant que f est bijective, donnons sa réciproque explicitement :

f:Q0—-Q
y— " (y).

L'expression de f~'(y) a en fait été trouvée plus haut : il s’agit d’isoler x dans y = f(z), ce qui
donne x = f~(y) = 3y + 5. o

2.3 Cas des fonctions réelles

Dans cette section, on considere des fonctions f : A — B que l’on appellera réelles, ce qui signifie
que A et B sont des sous-ensembles de R. L'étude des fonctions de ce type constitue un des
objectifs de ce cours, surtout via la notion de limite qui sera introduite bien plus tard. Ici nous ne
ferons qu’illustrer les notions de la section précédente dans ce cas particulier.
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2.3.1 Graphe et ensemble image

Lorsque A et B sont des sous-ensembles de R, on peut représenter géométriquement toute 1'infor-
mation contenue dans une fonction f : A — B dans son graphe, qui est défini comme 1’ensemble
des points (z, f(z)) du plan cartésien, obtenus en laissant = parcourir tout 'ensemble A :

graphe(f) = {(z,y) e R* : x € A, y = f(z) € B}.

trace

=N
By @ rrrrassrsnsrsnras s d
oe

Sur l'animation ci-dessus, on peut “voir” Im(f) en activant “trace”, et en faisant varier x € A,
pour voir apparaitre les points de Im(f) sur 1’axe y.

Dans la pratique, on détermine 'ensemble image de f : A — B par le calcul : en cherchant les
y € B pour lesquels I'équation

flx)=y (2.3)
possede au moins une solution z € A. Dans les cas simples, cela revient a pouvoir isoler x dans
cette derniere expression.

Exemple 2.21. Soit

f:2,3] =R

r— f(z) = 3x2—4.

Par définition,
Im(f) ={y €R : 3z € [2,3] tel que f(z) =y}
Pour calculer Im(f), fixons y € R, et essayons de résoudre I'équation y = f(x), c’est-a-dire

_395—4
y=—G-

En isolant simplement x, on trouve la préimage de y :

2y +4
7

Comme il faut que la préimage appartienne a A = [2, 3], on veut que

2y +4 <3,

2 < <
3
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2.3. Cas des fonctions réelles

qui est équivalente, apres quelques manipulations, a
5

I<y<

[\]

On résume : I'équation y = f(x) possede une solution = € [2,3] si et seulement y € [1, 2]. Ceci
signifie que Im(f) = [1, 2]. On peut le vérifier graphiquement :

2.3.2 Injections, surjections, bijections

Dans le cas des fonctions réelles, I'injectivité et la surjectivité peuvent se caractériser en termes du
graphe de f, comme suit. Une fonction réelle f : A — B est

* surjective si toute droite horizontale d’équation y = b, avec b € B, coupe le graphe de f en
au moins un point,

* injective si toute droite horizontale d’équation y = b, avec b € B, coupe le graphe de f en
au plus un point .

2.3.3 Graphe de la fonction réciproque

Si une fonction réelle f est bijective, comment le graphe de f~! est-il relié a celui de f?
Plus précisément, considérons une fonction
f:A—B
x— f(z).
On rappelle que le graphe de f est I'ensemble des paires (z,y), ol y = f(z) etz € A.Si f est
bijective, le graphe de sa réciproque
f':B—A
y= ()
est 'ensemble des paires (y,z), ot x = f~!(y) et y € B. On a donc qu'un point (x,y) appartient
au graphe de f si et seulement si le point (y, z) appartient au graphe de f~'. Or dans le plan,
I'opération qui transforme (z,y) en (y, z) est une réflexion par rapport a la diagonale du premier

quadrant. On en conclut que si le graphe de f est connu, alors le graphe de f~' s’obtient en
réfléchissant celui de f a travers la diagonale du premier quadrant. Voyons quelques exemples.
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Exemple 2.22. Considérons

f:R—=R

T
——=4+1.
x 2+

Soient z, 2" € R tels que f(z) = f(a'). Ceci signifie que

x T
—4+1=—=+41
2+ 2+7

qui apres simplification donne = = 2’. Donc [ est injective. Ensuite, montrons que tout y € R

posseéde une préimage . En effet, on peut isoler x dans y = f(z) = § + 1, qui donne x = 2(y — 1).
Donc f est aussi surjective.
Ainsi, f est bijective, et sa réciproque est donnée par
ff'1:R—=R
y—=2y—1).

Remarquons que 1’on peut nommer la variable comme on veut, et on peut donc écrire
ffl:R=>R
r fH2) =2(x—1).

Le graphe de f~!(x) = 2(z — 1) s’obtient a partir de celui de f(z) = £ + 1, par une réflexion par
rapport a la diagonale :

®
T

Exemple 2.23. Considérons la fonction “au carré” :
f:R—=R

Tl

Puisque f(—x) = f(x) pour tout z, f n’est pas injective. On peut la rendre injective en restreignant
son ensemble de départ, en prenant par exemple R* :

f:R+—>R

T x?.
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2.4. Trigonométrie

Cette fonction est maintenant injective puisque f(z) = f(2') est équivalent a 2> — 2’* = 0, ’est-a-
dire (z — 2")(z + 2’) = 0. En se souvenant que z, 2’ € R, on voit que cette identité est vérifiée si et
seulement si x = 2.

On montrera plus tard (voirici (lien vers la sectionm_reels_xcarre egal_ 2))quelm(f) =R,
(plus précisément, nous montrerons que pour tout y € R, il existe un z € R; tel que 2? = y).
Ainsi,

f Ry - Ry
T — 22,

est bijective. Sa réciproque est appelée la fonction racine carrée, et s’écrit en général “/-” :

1Ry - Ry
y= 7 y) = VY.

Son graphe s’obtient en réfléchissant celui de f(z) = z* a travers la diagonale du premier qua-
drant :

2.4 Trigonométrie

On rappelle ici les définitions et propriétés des principales fonctions trigonométriques.

Pour commencer, rappelons d’abord comment sont mesurés les angles dans le plan.

2.4.1 Surla mesure des angles
La mesure des angles se fait par un choix d'unités, et ce choix est déterminé une fois que 1’on fixe
la valeur de la mesure de 1’angle total (ouverture correspondant a “un tour complet”).

La mesure en degrés consiste a associer a I’angle total une mesure de 360 degrés, les autres angles
étant mesurés de facon proportionnelle :
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2.4. Trigonométrie

90°

120°
150°

60°
30°

180°

210°

360°

330°

240° ,,, 300

La mesure en radians est plus naturelle d'un point de vue géométrique, puisqu’elle consiste a
mesurer une longueur le long d"un arc de cercle. Si la longueur parcourue est égale au rayon, ceci
définit un angle de un radian :

—

A 0

L’angle total correspond donc a la longueur de la circonférence d"un cercle de rayon 1, a savoir
27. Quelques angles intermédiaires :

o,

ST,
o <
2

Soit un angle donné, dont la mesure en degrés est o, et celle en radians est «,.. Puisque

aq (7%
360  2r’
on a la formule de conversion :
g = @ar .
T

Donnons en passant 1’expression de l'aire A d’un secteur circulaire de rayon r, dont l'ouverture
est un angle de 6 radians :

26
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Dans le cas ot 'angle est total § = 2, ce secteur est un disque, et donc son aire est égale a nr2. Or
pour un secteur quelconque, la proportionnalité existant entre ’angle 6 et I'angle total doit étre la
méme que la proportionnalité existant entre 1’aire A du secteur et celle du disque :

0 B A

o e’
On a donc

A= %7“26’

2.4.2 Définitions des fonctions trigonométriques

Considérons un triangle rectangle, et distinguons un de ses angles non droit, que I’on notera « :

c

)O(.

Le coté a est le cathéte adjacent a o, le coté b est le cathete opposé a a, et ¢ est I’hypothénuse.

Pour l'instant, a €]0, 7[. On associe trois nombres a «, représentant chacun un rapport entre une
paire de cOtés :

Définition 2.24. % Le sinus de « est défini par
. b
sin(a) := .
* Le cosinus de « est défini par .
cos(a) := —
» La tangente de a est définie par ,
tan(q) := -

Remarquons que 1'on a toujours

iy et

Il est important de souligner que les nombres sin(«), cos(«), tan(a) sont définis comme étant des
proportions dans le rectangle considéré; ils ne dépendant donc pas du choix particulier fait pour
le rectangle. N'importe quel autre triangle semblable peut étre utilisé :

)OL
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2.4.3 Valeurs remarquables

Si les nombres sin(a), cos(a), tan(a) sont géométriquement bien définis, il est en général difficile
de les calculer exactement.

Il existe pourtant certains angles, appelés remarquables, qui sont des parties rationnelles de 27,
pour lesquels ces nombres peuvent étre calculés exactement. Commengons par les plus simples.

Considérons o = 7, que 'on peut représenter dans un triangle rectangle dont les deux catheétes
sont de longueurs 1, ce qui implique que son hypothénuse a pour longueur /12 + 12 = /2 :

iz 1
"y
1
On a donc directement :
1
=TT
o L V2
=R

Considérons ensuite o = %, que 'on peut représenter comme un triangle rectangle égale a une
moitié d"un triangle équilatéral de coté 1 (dont les trois angles sont égaux a %) :

: G,
3
%
3
1z,

Par Pythagore, le cathéte opposé a longueur [ = /12 — (1)2 = ¥3 On en déduit :
ythag pp g 2 2

oo V3/2 V3
==y
cos(%):#:%

tan(%):%:\/g.
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Remarquons que l'autre angle non-droit de ce triangle vaut %, et donc on a aussi

- 1/2 1

sm(%):TZ§
V32 VB
o= =%
/2 1

tan(§) = \/_T/Z =75

2.4.4 Cercle trigonométrique et extension a tout R

Nous l'avons dit plus haut, ce qui définit les fonctions trigonométriques sont des proportions (ici :
des quotients de longueurs); elles ne dépendent pas du triangle utilisé pour les définir. On peut
donc choisir de toujours les définir a partir d"un triangle dont ’hypothénuse est de longueur égale
al.

Or un triangle dont I'hypothénuse est de longueur 1 peut étre placé dans le plan cartésien, avec
I'angle a l'origine, le cathete adjacent le long de 1’axe Oz. Son sommet , noté P sur l'image ci-
dessous, est donc placé sur le cercle de rayon 1 centré a ’origine, appelé cercle trigonométrique.
Les trois nombres sin(«), cos(«) et tan(a) peuvent alors étre vus comme des longueurs (sur l’ani-
mation, faire varier o en déplacant P) :

sin(a)

L'utilisation du cercle trigonométrique permet de généraliser naturellement ces fonctions, en les
définissant pour un angle quelconque « € R (a part la tangente, définie pour tout angle qui n’est
pas de la forme 7§ + k7, k € Z).

2.4.5 Graphes

Graphe de la fonction sin : R — [—1, 1] :
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. sin(z) o

|
e
=@
3

Graphe de la fonction cos : R — [—1,1] :

T
3 ™

E
cos(z) @ 2

Graphe de la fonction tan : R\ {§ + km,k € Z} — R:

20

tan

M|“‘l
3

2.4.6 Propriétés

La définition géométrique des fonctions trigonométriques (sur le cercle trigonométrique) permet
d’obtenir facilement leurs principales propriétés élémentaires.

Par exemple, sous la transformation « — « + 27, ces fonctions sont inchangées :
sin(a + 27) = sin(a), cos(a + 2m) = cos(a) .

On a par contre que
tan(a + 7) = tan(«),
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on dit que la tangente est périodique, de période 7.

Ensuite, sous la transformation o — « + T,

etsousa — a+ 7,

Sous la transformation o — 5—a:

Enfin,

sin(a + ) = —sin(«)
cos(a + ) = — cos(«)
tan(a + 7) = tan(a) ,

sin(a + §) = cos(a)
cos(a + §) = —sin(a)
—1
tan(a + §) = fan(a)
sin(§ — a) = cos(a
cos(§ — a) = sin(a)
tan(3 —a) = tanl(oz)
sin(—a) = —sin(«)

cos(—a) = cos(a)

tan(—a) = — tan(«)

2.4.7 Identités trigonométriques

Par le Théoreme de Pythagore (dans le cercle trigonométrique), on obtient I'identité fondamentale

sin®(a) + cos*(a) = 1.

Passons aux identités fondamentales concernant les sommes d’angles :

Théoreme 2.25. Pour tous o, 5 € R,

sin(a + ) = sin(«) cos(B) + sin(B) cos(«)
cos(a + ) = cos(a) cos(B) — sin(«a) sin(3)

tan(a + 8) =

tan(a) + tan(p)

1 — tan(a) tan(B)

Preuve: Pour simplifier, supposons que 0 < «, 8 < 7, et plagons 1’angle a + 3 sur le cercle trigonométrique :

o
L %
gl aetD
E
a A
C
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(Remarquons que l’angle « se retrouve en A, puisque AE L OD et AC L OC') Avec les points représentés
sur cette image,
sin(a + 8) = AC = AB + BC'.
On remarque que
* Dans le triangle OAFE, o E est le projeté orthogonal de A sur OD, OF = cos(8), AE = sin(f3).
* Dans le triangle ABE, AE = AB cos(«), BE = ABsin(a).
x Dans le triangle OBC, BC = OB sin(a).

On adonc:

sin(a + ) = AB+ BC
= AB + OBsin(«)
= AB+ (OF — BE)sin(«)
= AB + (cos(f) — ABsin(a)) sin(«)
= AB(1 — sin?(a)) + sin(a) cos(B)
= AB cos?(a) + sin(a) cos(3) .

Mais puisque

_AE _ sin(pB)
AB = cos(a)  cos(a)’
on a bien que
sin(a+ ) = z:;ii)) cos?(ar) + sin(a) cos(B)

= sin(f) cos(a) + sin(a) cos(B) ,

ce qui démontre la premiére identité.

Pour la deuxiéme, on peut utiliser sin(f + %) = cos(f) et la premiere identité, en écrivant

cos(av+ ) =sin((a+ ) + §)
sin(a + (8 + 3))
(
(

sin(a) cos(f + §) +sin(B + F) cos(a)
sin(a)(—sin(f)) + cos(5) cos(w)

cos() cos(B) — sin(a) sin(3) .

La troisieme identité découle des deux premieres puisque

sin(a
tan(a + 8) = cos((a ))
_ sin(a) cos(B) + sin(B) cos(a)
~ cos(a) cos(B) — sin(a) sin(B)
(iote + n(3)
_ cos(a) ' cos(B)
sin(a) sin(f8
cOS (1 - cos((a)) cosgﬂ)))

_ tan(a) + tan(p)
1 — tan(a) tan(3)

Comme conséquence, des formules tres utiles dans la pratique :
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Corollaire 2. Pour tout o € R,

sin(2«) = 2sin(«) cos(a)
cos(2a) = cos?(a) — sin?(a) = 2cos?(a) — 1 = 1 — 2sin?(a)
tan(2a) = %

Les formules ci-dessus permettent de trouver des formules exactes pour des angles plus compli-
qués que les quelques angles remarquables mentionnés plus haut. En effet, si on sait par exemple
que cos(5) > 0, et qu'on connait cos(), on peut utiliser la formule ci-dessus comme suit :

Exemple 2.26. Puisque 0 < § < 7, onacos(g) > 0, et donc en posant o = 7,

cos(

N|R

) = cos(§

=

1+ ¥2

cos(§

et donc

sin % =+,/1-— cosQ(g) = ;

tan(g) =
o

L’exemple ci-dessus montre que 'on peut, a priori, calculer les valeurs exactes des fonctions tri-
gonométriques pour tous les angles de la forme ;.

Corollaire 3. Pour tous z,y € R,

sin(x) + sin(y) = 2sin(" JQF ) cos(~ 2 )
sin(z) — sin(y) = 2sin (" ; 7) cos(~ ; ‘)
cos() + cos(y) = 2 cos (= ; %) cos (= ; ’)
cos() — cos(y) = ~2sin(2) sin(*=Y)

Preuve: Montrons la premieére identité. En utilisant la formule du dessus, on développe les termes du
membre de droite,

sin(fc ;r y) = sin(%) cos(4) + cos(%) sin(%)
COS($ ; y) = cos(§) cos(}) — sin(§) sin(—%)
= cos(5) cos(%) +sin(%)sin(¥).
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En multipliant ces deux lignes, une simplification mene a

T+

y) cos(w — y) = sin(%) cos(%) + sin(¥) cos(¥)

sin( 5

3 sin(z) + 3 sin(y) .

2.5 Fonctions trigonométriques réciproques

On définit ici les fonctions réciproques des fonctions trigonométriques. On verra ici (lien vers la
section m_derivee_fonction_reciproque) comment calculer les dérivées de ces fonctions
réciproques.

2.5.1 Réciproque du sinus : arcsinus

La fonction sinus, vue comme définie sur tout R,

sin: R — [—1,1]
x +— sin(x),

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant

son domaine. La restriction standard est de prendre |7, 7]. Ainsi,
sin: [-5,5] = [-1,1]
x +— sin(x)

est bijective.

z > sin(z)

+1
N/~ arcsin(y) . /
. -
L]
-7 T T
/ 2
-1

Sa réciproque s’appelle l'arcsinus :

arcsin : [-1,1] — [-F, 7]

y +— arcsin(y)

Comme on sait, son graphe est celui du sinus, réfléchi a travers la diagonale du premier qua-
drant :
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;
-1
[ ]
S |
2
Par définition,
arcsin(sin(x)) = x Vz € [-3,5],
sin(arcsin(z)) = x Vo e [—1,1]

2.5.2 Réciproque du cosinus

La fonction cosinus, vue comme définie sur tout R,

cos: R — [—1,1]

x +— cos(x),

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant
son domaine. La restriction standard est de prendre [0, 7. Ainsi,

cos: [0,m] = [—1,1]
x + cos(x)

est bijective.

x > cos(x)

+1
Yy au:ccos(y)T
T2 ™

|

3
|
_-
/

Sa réciproque s’appelle I'arccosinus :

arccos : [—1,1] — [0, 7]
y +— arccos(y)

Comme on sait, son graphe est celui du cosinus, réfléchi a travers la diagonale du premier qua-
drant :
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M

850

Par définition,

arccos(cos(x)) = x Ve [0,7],
T

cos(arccos(z)) = Vo e [-1,1].

2.5.3 Réciproque de la tangente
La fonction tangente

tan : R\ {§ +km, k€ Z} - R
x +— tan(x),

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant

son domaine. La restriction standard est de prendre | — 7, 7[. Ainsi,

tan:}—z z[—ﬂR

272
x +— tan(x)

est bijective.

x — tan(z)

y — arctan(y)

4z x
L ]
- z I

36
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Sa réciproque s’appelle I'arctangente :

arctan : R =] — 7, 7|

y — arctan(y)

Comme on sait, son graphe est celui de la tangente, réfléchi a travers la diagonale du premier

quadrant :
QJ/‘

+7r
2

2

Par définition,

arctan(tan(z)) = x vz €]3, 5[,
x

tan(arctan(z)) = Vr e R.

2.6 Exponentielles et logarithmes

N’ayons pas peur des mots : les exponentielles et les logarithmes sont les fonctions les plus importantes
des mathématiques.

Or pour les définir précisément, comme fonctions d'une variable réelle z, on doit d"une fagon ou
d’une autre passer par l'utilisation de la notion de limite. Ceci fait qu’on ne peut en principe pas
les utiliser avant des étapes plus avancées du cours.

Pourtant, leur importance fait qu’on est habitué a les manipuler depuis 1’école, bien avant 1'uni-
versité. Donc dans ce cours, le choix a été fait de les utiliser depuis le début, dans de nombreux
exemples.

Donc nous allons ici nous contenter de rappeler les propriétés qui caractérisent les exponentielles
et les logarithmes. Plus tard, nous reviendrons sur leur construction rigoureuse. (Voir ici (lien vers
la section m_fonctions_EXPLOG) etici (lien vers la section m_fonctions_LOGEXP).)

2.6.1 Exponentielle de base a

Fixons un nombre a > 0, différent de 1, que I'on appelle base.

Sin e N*={1,2,3,...}, on définit

a =a-a-...-Qa
N————
n fois

Cette notation compacte pour un produit a la propriété fondamentale suivante : pour toute paire
m,n € N¥,

Cette propriété peut étre utilisée comme fil conducteur pour étendre progressivement la fonction
n — a™ a des valeurs de n plus générales.
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1w _Qr

Pour commencer, voyons comment doit étre défini “a”” si on impose que la propriété soit vérifiée
aussi pour n = 0. On peut alors écrire

et comme a > 0, on en déduit que

Si on souhaite ensuite définir “a™” pour des entiers négatifs, en imposant encore que la propriété
soit vérifiée, on peut écrire, pour tout n € N¥,

0 _ an+(—n) n

l=a =a"a ",

d’ot1 on tire

On a maintenant une fonction,

a = 1.500
o
°
~ D — ——
a?
°
ol
L]
a’
. a? a—.l ®
—4 -

a® a® @ a ° L]
* L ] ’ 1 1 1
M I M M I I 1

La fonction exponentielle de base a est une généralisation de cette notion, ot I'entier n peut étre
remplacée par un réel x quelconque :

exp, : R — RY
x — exp,(z),

que I’on note souvent “a*” au lieu de “exp,(x)”. Cette généralisation est faite de facon a ce que la
propriété fondamentale soit préservée :

a” v = a®aY Vo,y € R.

De plus, cette fonction est bijective :
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a=1461...

— —eee,

a’ e

Remarquons que a” est croissante si a > 1, décroissante si 0 < a < 1.

2.6.2 Logarithme de base a

Etant bijective, la fonction exponentielle de base a posséde une réciproque, appelée logarithme
de base a :

log, : R}, = R
x — log,(x).
Par définition,
log, (exp,(z)) = = VezeR,
exp,(log,(y)) =y  VyeRL.

Sa propriété fondamentale est la suivante : pour tous z,y € R?,

log, (7y) = log,(x) + log,(y) -

a=2.000...
——————————

log, (x)

IS

A
La

Remarquons que log, (1) = 0, et que log, est croissante si a > 1, décroissante si 0 < a < 1.
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2.6.3 Changement de base

Si on connait log,(x), comment calculer log,(z)?
Nommons ces nombres :

* y1 = log,(x), qui est équivalent a x = a¥*

* Yo = logy(x), qui est équivalent a = = b¥2
On a alors

a¥t = Y2
et en prenant log,(-) des deux cotés,
Y2 = y1 logy(a) .

On a donc la formule de changement de base :

_ logy, ()
log,(a)

log, ()

Cette formule fait qu’il suffit en général de choisir une base et de travailler avec; les logarithmes
dans d’autres bases peuvent étre obtenus a 'aide de cette formule.

2.6.4 Labasec

I existe une base pour laquelle les fonctions exponentielles et logarithme possédent des propriétés

‘" _ 7

supplémentaires, qui les rendent plus faciles a manipuler. La base en question est notée “e”, out
e = 2.718281828459045235360287471352662497 . . .

Pour nous, ce nombre sera défini par la limite suivante (nous y reviendrons ici (lien vers la section
m_suites_serie_geometrique)):

1\"
e = lim (1+2)
n—0o0 n
Les exponentielles et logarithmes dans la base e sont généralement notés comme suit :
exp(z) = e,

log(z) .

exp, ()
log, ()

Le logarithme log(z) est appelé logarithme naturel (ou népérien). On trouve souvent la notation
“In(z)”, que nous n’utiliserons pas ici.

Pour plus de détails historiques consulter I’article Histoire des logarithmes et des exponentielles
(Wikipedia) (lien web).

2.7 Preuves par récurrence

La méthode de preuve par récurrence (appelée aussi preuve par induction) est une technique de dé-
monstration qui, quand elle s’applique, permet de démontrer une infinité d’affirmations en seule-
ment deux étapes.

(ici, Video: v_recurrence_NEW.mp4)
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Supposons que ’on définisse, pour chaque entier n > 1, une certaine propriété P(n). Pour chaque
n, P(n) est soit vraie, soit fausse.

Exemple 2.27. Soit P(n) =“le nombre entier n est divisible par 2”. Alors P(1) est fausse, P(2) est
vraie, P(3) est fausse, etc. Donc on peut tout de suite résoudre tous les cas : P(n) est vraie sin est
pair, fausse si n est impair. o

En mathématiques, on a souvent besoin de montrer qu’une infinité de propriétés sont vraies si-
multanément : P (1) est vraie, P(2) est vraie, P(3) est vraie, etc.

Si ces propriétés P(n) n’ont rien a voir les unes avec les autres, on n’a d’autre alternative que de
les vérifier les unes apres les autres.

Exemple 2.28. Supposons qu’un certain univers contienne une infinité de galaxies. Soit P(n) la

propriété “il existe, dans cet univers, une galaxie dans laquelle on peut trouver exactement n
planetes sur lesquelles on trouve de la vie”.

Si on fixe un n et qu’on se pose la question de savoir si P(n) est vraie ou fausse, on n'a qu'un
seul moyen d’obtenir la réponse : parcourir tout 'univers jusqu’a trouver une galaxie contenant
exactement n planetes sur lesquelles on trouve la vie. o

Si on a de la chance, on peut espérer étudier la véracité de ces propriétés P(n) en profitant de
certaines relations pouvant exister entre elles, pour des n différents.

Dans le cas de la récurrence, on s’intéresse a une relation entre les paires d’entiers consécutifs, n
et n + 1, et la relation considérée est la suivante : si P(n) est vraie, alors P(n + 1) est vraie aussi.

Exemple 2.29. Dans 'exemple du dessus (galaxies), il n'y a aucune corrélation du genre entre les
propriétés P(n) pour des n différents, puisque savoir que P(n) est vraie n'implique pas forcément
que P(n + 1) soit vraie aussi. o
Exemple 2.30. Supposons que 1’on ait devant nous une tres longue table sur laquelle sont posés

une infinité d’ordinateurs, numérotés 1,2, 3,.... On découvre avec effroi que sur chacun de ces
ordinateurs est installé un systeme opérationnel propriétaire, issu d"une grande compagnie.

On suppose que ces ordinateurs sont tous allumés, et que pour tout n, le n-eme ordinateur envoie
constamment des données non-cryptées vers son voisin n + 1. Dans ce cas, il est absolument
certain que si 'ordinateur n est infecté par un virus, alors I’ordinateur n 4 1 est infecté aussi. En
d’autres termes, si on définit la propriété P(n) ="le néme ordinateur est infecté par un virus”, on
sait que si P(n) est vraie, alors P(n + 1) est vraie aussi.

Ceci a la conséquence suivante : si un seul de ces ordinateurs est infecté, alors tous les suivants le
sont aussi. En particulier, si le premier est infecté, alors tous sont infectés. o

La méthode de démonstration par récurrence consiste a donner une démonstration dans laquelle on
utilise une structure semblable a celle de ce dernier exemple. On la résume comme suit :

Montrer par récurrence qu’une infinité de propriétés P(n) (n = 1,2, 3, ...) sont vraies, cela consiste

1) a vérifier que la premiere propriété P (1) est vraie, (c’est 'initialisation), puis
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2) a vérifier que quel que soit I'indice n > 1, si P(n) est vraie, alors cela entraine que P(n + 1)
est vraie aussi (c’est le pas d’induction).

Si on peut effectivement vérifier ces deux étapes, alors 1. implique que P(1) est vraie, mais alors
2. implique que P(2) est vraie aussi, mais alors 2. implique que P(3) est vraie aussi, etc. Par ce
procédé, on démontre donc bien que P(n) est vraie pour tout n > 1.

Informel 2.31. Pour que le pas d’induction ait une chance de fonctionner, il faut évidemment que
les propriétés P(n) et P(n+1) puissent étre mises en relation, quel que soit n! Et 1, la difficulté est
de travailler avec un n quelconque, dont on ne spécifie pas la valeur; dans les situations concretes,
ceci implique en général un calcul /ittéral, dans lequel on manipule ce n inconnu.

Exemple 2.32. Nous allons montrer que pour tout n € N*,

n(n+1)

L4243 44+ +n=——

Commengons par nommer les deux membres de 'identité ci-dessus, en posant

1
ap =14+24+3+4+---+n, et bn::@.

Pour un n spécifique pas trop grand, on peut toujours le vérifier en calculant la valeur de a,, puis
celle de b, puis de voir si elles sont égales. Par exemple,

* pourn=1,onaa =1leth =12 =1 etdonca; =b
* pourn=20naa =1+2=3eth =2 =3 etdoncay = b,.
On voit donc que a; = by et ay = bs.

On pourrait continuer a vérifier la relation “a,, = b,,” pour des n toujours plus grands, en calculant
séparément les nombres a,, et b, “a la main”, et en vérifiant qu’ils sont effectivement égaux. Mais
ceci n’exclut pas qu'il existe un n, éventuellement tres grand, pour lequel a,, # b,,!

Définissons donc, pour tout n > 1, la propriété P(n) comme étant : “pour l'entier n, ona a,, = b,”.
Montrons, par récurrence, que P(n) est vraie pour tout n > 1.
1) Initialisation : on a déja vérifié plus haut, “a la main”, que a; = b, et donc on sait que P(1)
est vraie.

2) Pas d’induction : supposons que pour un n donné (dont on n’a pas besoin de spécifier la
valeur), P(n) est vraie , c’est-a-dire que 1’on a effectivement

an, = b, .

Pour montrer que ceci entraine que P(n + 1) est vraie, on va faire un calcul, a I'issue duquel
on obtiendra que a,4+1 = by,41. Or la structure du probléme fait que a,, peut étre relié a a,,.
En effet,

pp1 =1+2+3+4+---+n+n+1)=a,+(n+1).

Mais, puisque 'on est en train de supposer que a,, = b,, on peut 'utiliser et faire un peu
d’arithmétique :

A1 =by + (n+1)

:n(n2—|—1) + (1)
_nn+1)+2n+1)  (n+1)(n+2)
B 2 B 2 '
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2.7. Preuves par récurrence

Mais puisque
(n+1)(n+2) (n+1)((n+1)+1)

5 = 9 = bn+1 )
on a bien montré que a,+1 = b,+1. Ceci montre que si P(n) est vraie, alors P(n + 1) est vraie
aussi.
On a donc bien montré que P(n) est vraie pour tout n > 1. o

Remarque 2.33. En utilisant la méme technique, on peut montrer que pour tout n € N,

1)(2 1
12+22+32+4Q+“.+n2:n(n+ )6<n+ )

En fait il existe des formules semblables pour toute somme du type
1P 42k 438 4. 4k

ol k > 1 est un entier. Voir ici (Mathologer) (lien web) pour plus d’informations. o

Exemple 2.34. Posons, pour tout n > 1, a,, = 10" — 1, et considérons l'affirmation P(n) définie par
“a,, est un multiple de 9”.

1) Pourn =1,0onaa; = 10" — 1 =9, qui est un multiple de 9.

2) Supposons que P(n) est vraie, c’est-a-dire que a,, est un multiple de 9. Ceci s’exprime en
disant qu’il existe un entier k tel que a,, = 9%k. Remarquons alors qu’on peut écrire

Upyr = 10" —1=10-10" -1
=10(a, +1) —1
=10(9% +1) —1=9(10k + 1).
7.kl

Or puisque k est un entier, £’ = 10k + 1 est aussi un entier. Donc a,,+1 = 9%’ : a,,11 est aussi
un multiple de 9, et donc P(n + 1) est vraie.

Ceci montre que P(n) est vraie pour tout n > 1. o

2.7.1 La formule du binome de Newton

Rappelons la définition des coefficients bindmiaux. Pour un entier n > 1 quelconque, et pour

toutl <k <n,
n\ n!
k) El(n — k)!

) compte le nombre de fagons d’arranger k objets indistingables dans n boites

En combinatoire, (],

(un objet par boite).
Lemme 4. (formule du bindme de Newton) Soient x,y € R. Alors pour tout entier n > 1,
n __ - n n—k, k
(x+y) —Z (k>x y*.
k=0
Preuve: (Voir la vidéo) O

Voir aussi la vidéo de Michael Penn (lien web).
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