
Chapitre 2

Notions élémentaires

2.1 Sommes et produits

2.1.1 Sommes finies

(ici, Video: v_elementaire_sommes.mp4)

Lorsqu’on considère des sommes de beaucoup de nombres, on a avantage à utiliser une notation
compacte, qui évite d’écrire explicitement tous les termes de la somme :

x1 + x2 + · · ·+ xN ≡
N∑
k=1

xk .

On lit ce dernier symbole “somme des xk, pour k allant de 1 à N”, et on appelle xk le terme général
de la somme.

Notons que l’indice k utilisé ci-dessus est muet, dans le sens où il n’est utilisé “temporairement”
que pour nommer l’entier sur lequel on somme. On pourrait donc le nommer de façon arbitraire,
cela ne change pas la valeur de la somme :

N∑
k=1

xk =
N∑
j=1

xj =
N∑
n=1

xn .

Lemme 2. La somme satisfait aux propriétés suivantes.

⋆ Pour toute constante λ ∈ R,
N∑
k=1

(λak) = λ
N∑
k=1

ak.

⋆
N∑
k=1

(ak + bk) =
( N∑
k=1

ak

)
+
( N∑
k=1

bk

)
.

Il existe certains cas où le terme général est assez simple pour que la valeur de la somme puisse
être calculée explicitement en fonction de N :
Exemple 2.1. Si le terme général est constant, xk = C (pour tout k), alors

N∑
k=1

xk = C + C + C + · · ·+ C︸ ︷︷ ︸
N fois

= CN .

⋄
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2.1. Sommes et produits

Exemple 2.2. Si xk = k, on montrera plus tard par récurrence que

N∑
k=1

xk = 1 + 2 + 3 + · · ·+N =
N(N + 1)

2
.

⋄
Exemple 2.3. La somme harmonique a pour terme général xk = 1

k
:

N∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

N
.

On ne peut hélàs pas la calculer exactement en fonction de N , mais nous verrons plus tard qu’elle
se comporte, lorsque N est grand, essentiellement comme logN . ⋄

Il y a un autre type de sommes que l’on sait sommer exactement, et qui sera d’importance capitale
pour la suite :

2.1.2 Les sommes géométriques

Soit r ∈ R un réel fixé, appelé raison. La somme de terme général xk = rk, pour k allant de 0 à N ,

SN :=
N∑
k=0

rk = 1 + r + r2 + r3 + · · ·+ rN ,

est appelée somme géométrique.

On peut calculer SN exactement, quelle que soit la valeur de N . En effet, si r = 1, alors SN = N+1
(puisque la somme SN contient N + 1 termes constants, égaux à 1). Pour les autres valeurs de r :

Lemme 3. Si r ̸= 1, alors

SN =
1− rN+1

1− r
.

Preuve: Remarquons que SN = SN−1 + rN , et que

SN = 1 + r + r2 + r3 + · · ·+ rN

= 1 + r(1 + r + r2 + · · ·+ rN−1)

= 1 + rSN−1

= 1 + r(SN − rN ) .

Cette égalité permet d’écrire (1 − r)SN = 1 − rN+1, et puisqu’on suppose que r ̸= 1, on peut diviser des
deux côtés par 1− r, ce qui donne bien SN = 1−rN+1

1−r .

Exemple 2.4. On peut par exemple calculer,

7100 + 7101 + 7102 + · · ·+ 71000 = 7100
(
1 + 7 + 72 + · · ·+ 7900

)
= 7100

900∑
k=0

7k

= 7100
1− 7901

1− 7

=
71001 − 7100

6
.

⋄

NumChap: chap-notions-elementaires, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 15

botafogo.saitis.net


2.2. Fonctions

2.1.3 Produits finis

Il existe aussi un symbole utile pour le produit d’un nombre fini de réels :

a1 · a2 · a3 · · · aN ≡
N∏
k=1

ak ,

qui se lit “produit des ak, pour k allant de 1 à N .

2.2 Fonctions

(ici, Video: v_fonctions_ensemble_image.mp4)

2.2.1 Notion de fonction

Dans cette section, on rappelle quelques définitions élémentaires relatives à la notion de fonction.
Même si dans ce cours on s’intéressera surtout à des fonctions réelles d’une variable réelle, ce que
l’on présente ici est très général et s’applique à des situations très diverses, comme par exemple
l’étude des applications linéaires en algèbre linéaire.

Définition 2.5. Soient A,B deux ensembles quelconques non-vides. Une fonction de A dans B,

f : A→ B ,

est une règle qui associe à chaque élément x ∈ A un (et un seul) élément y ∈ B, appelé l’image de
x (par f ), et on écrit

y = f(x) .

On dit alors que x est une préimage (ou un antécédent) de y.

Lorsque x ∈ A est associé à y ∈ B, on pourra penser à cette association comme à une “flèche de x
vers y”. En termes de flèches, une fonction de A dans B est donc bien définie une fois que l’on a,
pour chaque x ∈ A, exactement une flèche reliant ce x à un (et un seul) y ∈ B. En particulier, il ne
peut pas y avoir deux flèches sortant d’un x.

Pour des raisons évidentes, A est parfois appelé l’ensemble de départ, et B l’ensemble d’arrivée.
Pour bien indiquer l’ensemble de départ et d’arrivée d’une fonction, on écrit

f : A→ B (2.1)
x 7→ y = f(x) . (2.2)
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2.2. Fonctions

Exemple 2.6. Considérons A = Z, B = {⋆,♣,♠,♦}, et définissons la fonction f : A → B comme
suit : pour x ∈ A,

f(x) :=


⋆ si x ⩽ −17 ,

♣ si − 17 < x < −16 ,

♠ si − 16 ⩽ x ⩽ 1 ,

♦ si x > 1 .

Ici, ⋆ et ♦ possèdent chacun une infinité de préimages, ♠ possède 18 préimages, et ♣ ne possède
aucune préimage. ⋄

2.2.2 Ensemble image

Il est naturel de considérer, pour commencer l’étude d’une fonction, de déterminer quels sont les
éléments de l’ensemble d’arrivée qui possèdent au moins une préimage :

Définition 2.7. L’ensemble image de f : A→ B est défini par

Im(f) :=
{
y ∈ B : ∃x ∈ A tel que f(x) = y

}
.

Par la définition de fonction, une flèche sort de chaque x ∈ A ; mais tous les y ∈ B ne sont pas
forcément atteints par une flèche. L’ensemble image est donc constitué des éléments de l’ensemble
d’arrivée qui sont atteints par au moins une flèche. On peut imaginer Im(f) obtenu en “balayant”
tout A avec la variable x, et en observant tous les y = f(x) ∈ B obtenus.

Exemple 2.8. Soit A = {1, 2, 3, 4}, B = {∆,Γ,Ψ}, et f : A→ B la fonction définie par :

f(1) = ∆ , f(2) = Γ , f(3) = ∆ , f(4) = Γ .

Alors Im(f) = {∆,Γ} (puisque Ψ n’a pas de préimage).

⋄
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2.2. Fonctions

2.2.3 Surjection

(ici, Video: v_fonctions_surjection.mp4)

Par définition, l’ensemble image d’une fonction f : A→ B est un sous-ensemble deB, Im(f) ⊂ B,
et il est naturel de considérer les fonctions pour lesquelles il coïncide exactement avec B :

Définition 2.9. f : A→ B est surjective si Im(f) = B, c’est-à-dire si chaque élément de l’ensemble
d’arrivée possède au moins une préimage.

Informel 2.10. Une fonction est surjective si chaque élément de l’ensemble d’arrivée est atteint
par au moins une flèche ; en d’autres termes, si les flèches qui partent de A “remplissent bien”
tout l’ensemble d’arrivée.

Exemple 2.11. La fonction

f : Z → Z
x 7→ f(x) = x+ 1

est surjective. En effet, prenons un y ∈ Z quelconque. Si on considère x := y − 1, alors

f(x) = x+ 1 = (y − 1) + 1 = y ,

donc x est antécédent de y, et donc y ∈ Im(f). ⋄
Exemple 2.12. Soit A l’ensemble des étudiant.e.s dans l’auditoire, et soit B = N = {0, 1, 2, 3, . . . }.
Considérons

f : A→ B

x 7→ f(x) ,

où f(x) est le nombre de frères et soeurs de x. Pour trouver Im(f), on peut procéder comme suit :
pour tout y ∈ B, on pose la question : “Qui possède exactement y frères et soeurs?” Si au moins
une main se lève, c’est que y ∈ Im(f). Dès qu’on a un y pour lequel aucune main se lève, c’est
que f n’est pas surjective. Pour s’assurer facilement que f n’est effectivement pas surjective, on
peut simplement poser la question : “Est-ce que quelqu’un a plus de 100 frères et soeurs?” Si
personne ne lève la main, c’est que Im(f) ⊂ {0, 1, 2, 3, . . . , 99, 100}. (Si on sonde l’auditoire, on
observe probablement quelque chose comme Im(f) = {0, 1, 2, 3, 4, 5}.) ⋄

Toute fonction peut être transformée en une fonction surjective, en modifiant simplement son
ensemble d’arrivée. En effet, si

f : A→ B

x 7→ f(x)
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2.2. Fonctions

n’est pas surjective, c’est que son ensemble d’arrivée B est “trop grand” : Im(f) est un sous-
ensemble stricte de B. On peut alors retirer les éléments de B qui ne sont pas dans l’image, et
obtenir une fonction surjective. Plus précisément,

f̃ : A→ Im(f)

x 7→ f(x)

est surjective.
Exemple 2.13. La fonction

f : N → N
x 7→ 2x

n’est pas surjective, puisque si y ∈ N est impair, il ne possède pas de préimage. Ici, Im(f) = Npairs,
l’ensemble de tous les entiers positifs pairs. En restreignant son ensemble d’arrivée à Im(f), on
obtient

f̃ : N → Npairs

x 7→ 2x ,

qui est surjective. ⋄

2.2.4 Injection

(ici, Video: v_fonctions_injection.mp4)

Une deuxième chose naturelle à considérer, pour une fonction donnée, est de savoir si celle-ci
sépare les points, c’est-à-dire si des points différents, dans l’ensemble de départ, ont des images
différentes :

Définition 2.14. f : A→ B est injective si x ̸= x′ implique f(x) ̸= f(x′).

Informel 2.15. Si la fonction est injective, des flèches qui partent de points différents doivent
arriver en des points différents !

Exemple 2.16. Considérons

f : Z → N
x 7→ x2 .

Puisque f(−2) = 4 et f(2) = 4, f n’est pas injective.
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2.2. Fonctions

⋄

Une caractérisation équivalente de l’injectivité, plus commode à manipuler dans la pratique, est
la suivante : f est injective si f(x) = f(x′) implique x = x′.
Exemple 2.17. Montrons que

f : N → Q

x 7→ x2

x2 + 1

est injective. Pour ce faire, prenons deux éléments x, x′ ∈ N, et supposons que f(x) = f(x′),
c’est-à-dire

x2

x2 + 1
=

x′2

x′2 + 1
.

Quelques manipulations montrent que cette dernière identité est équivalente à

x2 − x′
2
= 0 ⇔ (x− x′)(x+ x′) = 0 ,

qui n’est vérifiée que si au moins une des parenthèses est nulle. Or la première est nulle si x = x′,
et puisque x, x′ ∈ N, la deuxième ne peut s’annuler que si x = x′ = 0. Dans tous les cas, on a bien
montré que f(x) = f(x′) implique x = x′, donc f est injective. ⋄

2.2.5 Bijection

(ici, Video: v_fonctions_bijection.mp4)

Voyons ce qui se passe lorsqu’une fonction possède en même temps les deux propriétés intro-
duites dans les sections précédentes.

Définition 2.18. Une fonction f : A→ B est bijective si elle est à la fois injective et surjective.

L’intérêt d’une fonction bijective est qu’on peut l’inverser, ce qui signifie revenir de l’ensemble
image à l’ensemble de départ, sans ambiguïté.

En effet, supposons que f : A → B est bijective, et fixons un élément quelconque de l’ensemble
d’arrivée, y ∈ B.

1) Comme f est surjective, y possède au moins une préimage.
2) Comme f est injective, y possède au plus une préimage.
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2.3. Cas des fonctions réelles

On en déduit que y possède exactement une préimage dans l’ensemble de départ : on la note f−1(y).
Avoir associé à tout y ∈ B un unique élément f−1(y) ∈ A signifie que nous avons défini une fonction
de B dans A. Puisque cette fonction permet d’obtenir l’unique préimage de chaque élément de B,
on l’appelle la réciproque de f :

f−1 : B → A

y 7→ f−1(y)

Par définition, la réciproque permet de récupérer la préimage :

f−1(f(x)) = x ∀x ∈ A .

Mais aussi,
f(f−1(y)) = y ∀y ∈ B .

Remarque 2.19. L’utilisation du symbole “f−1”, pour la réciproque, est largement répandue, et
nous l’utiliserons, mais elle peut prêter à confusion. En effet, pour des fonctions numériques,
f−1(y) ne doit en aucun cas être confondu avec f(y)−1, qui signifie 1

f(y)
! ⋄

Exemple 2.20. Montrons que la fonction

f : Q → Q

x 7→ f(x) =
x− 5

3

est bijective. (On utilise des couleurs uniquement pour distinguer les ensembles de départ et
d’arrivée.)

⋆ Soient x, x′ ∈ Q. On a

f(x) = f(x′) ⇔ x− 5

3
=
x′ − 5

3
⇔ x = x′ ,

donc f est injective.

⋆ Soit y ∈ Q. Montrons que y possède une préimage, à savoir un x ∈ Q tel que y = f(x) = x−5
3

.
En effet, on peut simplement isoler x dans “y = x−5

3
” et trouver x = 3y+5. Comme 3y+5 ∈ Q,

on a bien trouvé une préimage pour y. Donc f est surjective.

Maintenant que f est bijective, donnons sa réciproque explicitement :

f−1 : Q → Q
y 7→ f−1(y) .

L’expression de f−1(y) a en fait été trouvée plus haut : il s’agit d’isoler x dans y = f(x), ce qui
donne x = f−1(y) = 3y + 5. ⋄

2.3 Cas des fonctions réelles

Dans cette section, on considère des fonctions f : A→ B que l’on appellera réelles, ce qui signifie
que A et B sont des sous-ensembles de R. L’étude des fonctions de ce type constitue un des
objectifs de ce cours, surtout via la notion de limite qui sera introduite bien plus tard. Ici nous ne
ferons qu’illustrer les notions de la section précédente dans ce cas particulier.
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2.3. Cas des fonctions réelles

2.3.1 Graphe et ensemble image

LorsqueA etB sont des sous-ensembles de R, on peut représenter géométriquement toute l’infor-
mation contenue dans une fonction f : A→ B dans son graphe, qui est défini comme l’ensemble
des points (x, f(x)) du plan cartésien, obtenus en laissant x parcourir tout l’ensemble A :

graphe(f) = {(x, y) ∈ R2 : x ∈ A, y = f(x) ∈ B} .

Sur l’animation ci-dessus, on peut “voir” Im(f) en activant “trace”, et en faisant varier x ∈ A,
pour voir apparaître les points de Im(f) sur l’axe y.

Dans la pratique, on détermine l’ensemble image de f : A → B par le calcul : en cherchant les
y ∈ B pour lesquels l’équation

f(x) = y (2.3)

possède au moins une solution x ∈ A. Dans les cas simples, cela revient à pouvoir isoler x dans
cette dernière expression.
Exemple 2.21. Soit

f : [2, 3] → R

x 7→ f(x) :=
3x− 4

2
.

Par définition,
Im(f) =

{
y ∈ R : ∃x ∈ [2, 3] tel que f(x) = y

}
Pour calculer Im(f), fixons y ∈ R, et essayons de résoudre l’équation y = f(x), c’est-à-dire

y =
3x− 4

2
.

En isolant simplement x, on trouve la préimage de y :

x =
2y + 4

3
.

Comme il faut que la préimage appartienne à A = [2, 3], on veut que

2 ⩽
2y + 4

3
⩽ 3 ,
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2.3. Cas des fonctions réelles

qui est équivalente, après quelques manipulations, à

1 ⩽ y ⩽
5

2
.

On résume : l’équation y = f(x) possède une solution x ∈ [2, 3] si et seulement y ∈ [1, 5
2
]. Ceci

signifie que Im(f) = [1, 5
2
]. On peut le vérifier graphiquement :

⋄

2.3.2 Injections, surjections, bijections

Dans le cas des fonctions réelles, l’injectivité et la surjectivité peuvent se caractériser en termes du
graphe de f , comme suit. Une fonction réelle f : A→ B est

⋆ surjective si toute droite horizontale d’équation y = b, avec b ∈ B, coupe le graphe de f en
au moins un point,

⋆ injective si toute droite horizontale d’équation y = b, avec b ∈ B, coupe le graphe de f en
au plus un point .

2.3.3 Graphe de la fonction réciproque

Si une fonction réelle f est bijective, comment le graphe de f−1 est-il relié à celui de f ?

Plus précisément, considérons une fonction

f : A→ B

x 7→ f(x) .

On rappelle que le graphe de f est l’ensemble des paires (x, y), où y = f(x) et x ∈ A. Si f est
bijective, le graphe de sa réciproque

f−1 : B → A

y 7→ f−1(y)

est l’ensemble des paires (y, x), où x = f−1(y) et y ∈ B. On a donc qu’un point (x, y) appartient
au graphe de f si et seulement si le point (y, x) appartient au graphe de f−1. Or dans le plan,
l’opération qui transforme (x, y) en (y, x) est une réflexion par rapport à la diagonale du premier
quadrant. On en conclut que si le graphe de f est connu, alors le graphe de f−1 s’obtient en
réfléchissant celui de f à travers la diagonale du premier quadrant. Voyons quelques exemples.
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2.3. Cas des fonctions réelles

Exemple 2.22. Considérons

f : R → R

x 7→ x

2
+ 1 .

Soient x, x′ ∈ R tels que f(x) = f(x′). Ceci signifie que

x

2
+ 1 =

x′

2
+ 1 ,

qui après simplification donne x = x′. Donc f est injective. Ensuite, montrons que tout y ∈ R
possède une préimage x. En effet, on peut isoler x dans y = f(x) = x

2
+ 1, qui donne x = 2(y − 1).

Donc f est aussi surjective.

Ainsi, f est bijective, et sa réciproque est donnée par

f−1 : R → R
y 7→ 2(y − 1) .

Remarquons que l’on peut nommer la variable comme on veut, et on peut donc écrire

f−1 : R → R
x 7→ f−1(x) = 2(x− 1) .

Le graphe de f−1(x) = 2(x − 1) s’obtient à partir de celui de f(x) = x
2
+ 1, par une réflexion par

rapport à la diagonale :

⋄
Exemple 2.23. Considérons la fonction “au carré” :

f : R → R
x 7→ x2 .

Puisque f(−x) = f(x) pour tout x, f n’est pas injective. On peut la rendre injective en restreignant
son ensemble de départ, en prenant par exemple R+ :

f : R+ → R
x 7→ x2 .
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2.4. Trigonométrie

Cette fonction est maintenant injective puisque f(x) = f(x′) est équivalent à x2 − x′2 = 0, c’est-à-
dire (x− x′)(x+ x′) = 0. En se souvenant que x, x′ ∈ R+, on voit que cette identité est vérifiée si et
seulement si x = x′.

On montrera plus tard (voir ici (lien vers la section m_reels_xcarre_egal_2)) que Im(f) = R+

(plus précisément, nous montrerons que pour tout y ∈ R+, il existe un x ∈ R+ tel que x2 = y).
Ainsi,

f : R+ → R+

x 7→ x2 ,

est bijective. Sa réciproque est appelée la fonction racine carrée, et s’écrit en général “
√
·” :

f−1 : R+ → R+

y 7→ f−1(y) =
√
y .

Son graphe s’obtient en réfléchissant celui de f(x) = x2 à travers la diagonale du premier qua-
drant :

⋄

2.4 Trigonométrie

On rappelle ici les définitions et propriétés des principales fonctions trigonométriques.

Pour commencer, rappelons d’abord comment sont mesurés les angles dans le plan.

2.4.1 Sur la mesure des angles

La mesure des angles se fait par un choix d’unités, et ce choix est déterminé une fois que l’on fixe
la valeur de la mesure de l’angle total (ouverture correspondant à “un tour complet”).

La mesure en degrés consiste à associer à l’angle total une mesure de 360 degrés, les autres angles
étant mesurés de façon proportionnelle :
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2.4. Trigonométrie

La mesure en radians est plus naturelle d’un point de vue géométrique, puisqu’elle consiste à
mesurer une longueur le long d’un arc de cercle. Si la longueur parcourue est égale au rayon, ceci
définit un angle de un radian :

L’angle total correspond donc à la longueur de la circonférence d’un cercle de rayon 1, à savoir
2π. Quelques angles intermédiaires :

Soit un angle donné, dont la mesure en degrés est αd et celle en radians est αr. Puisque
αd
360

=
αr
2π

,

on a la formule de conversion :
αd =

180

π
αr .

Donnons en passant l’expression de l’aire A d’un secteur circulaire de rayon r, dont l’ouverture
est un angle de θ radians :
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Dans le cas où l’angle est total θ = 2π, ce secteur est un disque, et donc son aire est égale à πr2. Or
pour un secteur quelconque, la proportionnalité existant entre l’angle θ et l’angle total doit être la
même que la proportionnalité existant entre l’aire A du secteur et celle du disque :

θ

2π
=

A

πr2
.

On a donc
A = 1

2
r2θ

2.4.2 Définitions des fonctions trigonométriques

Considérons un triangle rectangle, et distinguons un de ses angles non droit, que l’on notera α :

Le côté a est le cathète adjacent à α, le côté b est le cathète opposé à α, et c est l’hypothénuse.

Pour l’instant, α ∈]0, π
2
[. On associe trois nombres à α, représentant chacun un rapport entre une

paire de côtés :

Définition 2.24. ⋆ Le sinus de α est défini par

sin(α) :=
b

c
.

⋆ Le cosinus de α est défini par
cos(α) :=

a

c
.

⋆ La tangente de α est définie par

tan(α) :=
b

a
.

Remarquons que l’on a toujours

tan(α) =
b

a
=
b/c

a/c
=

sin(α)

cos(α)
.

Il est important de souligner que les nombres sin(α), cos(α), tan(α) sont définis comme étant des
proportions dans le rectangle considéré ; ils ne dépendant donc pas du choix particulier fait pour
le rectangle. N’importe quel autre triangle semblable peut être utilisé :
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2.4.3 Valeurs remarquables

Si les nombres sin(α), cos(α), tan(α) sont géométriquement bien définis, il est en général difficile
de les calculer exactement.

Il existe pourtant certains angles, appelés remarquables, qui sont des parties rationnelles de 2π,
pour lesquels ces nombres peuvent être calculés exactement. Commençons par les plus simples.

Considérons α = π
4
, que l’on peut représenter dans un triangle rectangle dont les deux cathètes

sont de longueurs 1, ce qui implique que son hypothénuse a pour longueur
√
12 + 12 =

√
2 :

On a donc directement :

sin(π
4
) =

1√
2
=

√
2

2

cos(π
4
) =

1√
2
=

√
2

2

tan(π
4
) =

1

1
= 1 .

Considérons ensuite α = π
3
, que l’on peut représenter comme un triangle rectangle égale à une

moitié d’un triangle équilatéral de côté 1 (dont les trois angles sont égaux à π
3
) :

Par Pythagore, le cathète opposé a longueur l =
√

12 − (1
2
)2 =

√
3
2

. On en déduit :

sin(π
3
) =

√
3/2

1
=

√
3

2

cos(π
3
) =

1/2

1
=

1

2

tan(π
3
) =

√
3/2

1/2
=

√
3 .
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Remarquons que l’autre angle non-droit de ce triangle vaut π
6
, et donc on a aussi

sin(π
6
) =

1/2

1
=

1

2

cos(π
6
) =

√
3/2

1
=

√
3

2

tan(π
6
) =

1/2√
3/2

=
1√
3
.

2.4.4 Cercle trigonométrique et extension à tout R

Nous l’avons dit plus haut, ce qui définit les fonctions trigonométriques sont des proportions (ici :
des quotients de longueurs) ; elles ne dépendent pas du triangle utilisé pour les définir. On peut
donc choisir de toujours les définir à partir d’un triangle dont l’hypothénuse est de longueur égale
à 1.

Or un triangle dont l’hypothénuse est de longueur 1 peut être placé dans le plan cartésien, avec
l’angle à l’origine, le cathète adjacent le long de l’axe Ox. Son sommet , noté P sur l’image ci-
dessous, est donc placé sur le cercle de rayon 1 centré à l’origine, appelé cercle trigonométrique.
Les trois nombres sin(α), cos(α) et tan(α) peuvent alors être vus comme des longueurs (sur l’ani-
mation, faire varier α en déplaçant P ) :

L’utilisation du cercle trigonométrique permet de généraliser naturellement ces fonctions, en les
définissant pour un angle quelconque α ∈ R (à part la tangente, définie pour tout angle qui n’est
pas de la forme π

2
+ kπ, k ∈ Z).

2.4.5 Graphes

Graphe de la fonction sin : R → [−1, 1] :
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Graphe de la fonction cos : R → [−1, 1] :

Graphe de la fonction tan : R \ {π
2
+ kπ, k ∈ Z} → R :

2.4.6 Propriétés

La définition géométrique des fonctions trigonométriques (sur le cercle trigonométrique) permet
d’obtenir facilement leurs principales propriétés élémentaires.

Par exemple, sous la transformation α 7→ α + 2π, ces fonctions sont inchangées :

sin(α + 2π) = sin(α) , cos(α + 2π) = cos(α) .

On a par contre que
tan(α + π) = tan(α) ,
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on dit que la tangente est périodique, de période π.

Ensuite, sous la transformation α 7→ α + π,

sin(α + π) = − sin(α)

cos(α + π) = − cos(α)

tan(α + π) = tan(α) ,

et sous α 7→ α + π
2
,

sin(α + π
2
) = cos(α)

cos(α + π
2
) = − sin(α)

tan(α + π
2
) =

−1

tan(α)
.

Sous la transformation α 7→ π
2
− α :

sin(π
2
− α) = cos(α)

cos(π
2
− α) = sin(α)

tan(π
2
− α) =

1

tan(α)
.

Enfin,

sin(−α) = − sin(α)

cos(−α) = cos(α)

tan(−α) = − tan(α)

2.4.7 Identités trigonométriques

Par le Théorème de Pythagore (dans le cercle trigonométrique), on obtient l’identité fondamentale

sin2(α) + cos2(α) = 1 .

Passons aux identités fondamentales concernant les sommes d’angles :

Théorème 2.25. Pour tous α, β ∈ R,

sin(α + β) = sin(α) cos(β) + sin(β) cos(α)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

tan(α + β) =
tan(α) + tan(β)

1− tan(α) tan(β)
.

Preuve: Pour simplifier, supposons que 0 < α, β < π
4 , et plaçons l’angle α+β sur le cercle trigonométrique :
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(Remarquons que l’angle α se retrouve en A, puisque AE ⊥ OD et AC ⊥ OC.) Avec les points représentés
sur cette image,

sin(α+ β) = AC = AB +BC .

On remarque que

⋆ Dans le triangle OAE, où E est le projeté orthogonal de A sur OD, OE = cos(β), AE = sin(β).

⋆ Dans le triangle ABE, AE = AB cos(α), BE = AB sin(α).

⋆ Dans le triangle OBC, BC = OB sin(α).

On a donc :

sin(α+ β) = AB +BC

= AB +OB sin(α)

= AB + (OE −BE) sin(α)

= AB + (cos(β)−AB sin(α)) sin(α)

= AB(1− sin2(α)) + sin(α) cos(β)

= AB cos2(α) + sin(α) cos(β) .

Mais puisque

AB =
AE

cos(α)
=

sin(β)

cos(α)
,

on a bien que

sin(α+ β) =
sin(β)

cos(α)
cos2(α) + sin(α) cos(β)

= sin(β) cos(α) + sin(α) cos(β) ,

ce qui démontre la première identité.

Pour la deuxième, on peut utiliser sin(θ + π
2 ) = cos(θ) et la première identité, en écrivant

cos(α+ β) = sin((α+ β) + π
2 )

= sin(α+ (β + π
2 ))

= sin(α) cos(β + π
2 ) + sin(β + π

2 ) cos(α)

= sin(α)(− sin(β)) + cos(β) cos(α)

= cos(α) cos(β)− sin(α) sin(β) .

La troisième identité découle des deux premières puisque

tan(α+ β) =
sin(α+ β)

cos(α+ β)

=
sin(α) cos(β) + sin(β) cos(α)

cos(α) cos(β)− sin(α) sin(β)

=

hhhhhhhcos(α) cos(β)
( sin(α)
cos(α) +

sin(β)
cos(β)

)
hhhhhhhcos(α) cos(β)

(
1− sin(α)

cos(α)
sin(β)
cos(β)

)
=

tan(α) + tan(β)

1− tan(α) tan(β)
.

Comme conséquence, des formules très utiles dans la pratique :
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Corollaire 2. Pour tout α ∈ R,

sin(2α) = 2 sin(α) cos(α)

cos(2α) = cos2(α)− sin2(α) = 2 cos2(α)− 1 = 1− 2 sin2(α)

tan(2α) =
2 tan(α)

1− tan2(α)

Les formules ci-dessus permettent de trouver des formules exactes pour des angles plus compli-
qués que les quelques angles remarquables mentionnés plus haut. En effet, si on sait par exemple
que cos(α

2
) ⩾ 0, et qu’on connaît cos(α), on peut utiliser la formule ci-dessus comme suit :

cos(α
2
) = +

√
1 + cos(α)

2
.

Exemple 2.26. Puisque 0 < π
8
< π

2
, on a cos(π

8
) > 0, et donc en posant α = π

4
,

cos(π
8
) = cos(α

2
)

=

√
1 + cos(α)

2

=

√
1 +

√
2
2

2

=

√
2 +

√
2

2
,

et donc

sin(π
8
) = +

√
1− cos2(π

8
) =

√
2−

√
2

2
,

tan(π
8
) =

√
2−

√
2√

2 +
√
2
.

⋄

L’exemple ci-dessus montre que l’on peut, a priori, calculer les valeurs exactes des fonctions tri-
gonométriques pour tous les angles de la forme π

2n
.

Corollaire 3. Pour tous x, y ∈ R,

sin(x) + sin(y) = 2 sin
(x+ y

2

)
cos
(x− y

2

)
sin(x)− sin(y) = 2 sin

(x− y

2

)
cos
(x+ y

2

)
cos(x) + cos(y) = 2 cos

(x+ y

2

)
cos
(x− y

2

)
cos(x)− cos(y) = −2 sin

(x+ y

2

)
sin
(x− y

2

)
Preuve: Montrons la première identité. En utilisant la formule du dessus, on développe les termes du
membre de droite,

sin
(x+ y

2

)
= sin(x2 ) cos(

y
2 ) + cos(x2 ) sin(

y
2 )

cos
(x− y

2

)
= cos(x2 ) cos(

y
2 )− sin(x2 ) sin(−

y
2 )

= cos(x2 ) cos(
y
2 ) + sin(x2 ) sin(

y
2 ) .
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En multipliant ces deux lignes, une simplification mène à

sin
(x+ y

2

)
cos
(x− y

2

)
= sin

(
x
2

)
cos
(
x
2

)
+ sin

(y
2

)
cos
(y
2

)
= 1

2 sin(x) +
1
2 sin(y) .

2.5 Fonctions trigonométriques réciproques

On définit ici les fonctions réciproques des fonctions trigonométriques. On verra ici (lien vers la
section m_derivee_fonction_reciproque) comment calculer les dérivées de ces fonctions
réciproques.

2.5.1 Réciproque du sinus : arcsinus

La fonction sinus, vue comme définie sur tout R,

sin : R → [−1, 1]

x 7→ sin(x) ,

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant
son domaine. La restriction standard est de prendre [−π

2
, π
2
]. Ainsi,

sin : [−π
2
, π
2
] → [−1, 1]

x 7→ sin(x)

est bijective.

Sa réciproque s’appelle l’arcsinus :

arcsin : [−1, 1] → [−π
2
, π
2
]

y 7→ arcsin(y)

Comme on sait, son graphe est celui du sinus, réfléchi à travers la diagonale du premier qua-
drant :
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Par définition,

arcsin(sin(x)) = x ∀x ∈ [−π
2
, π
2
] ,

sin(arcsin(x)) = x ∀x ∈ [−1, 1] .

2.5.2 Réciproque du cosinus

La fonction cosinus, vue comme définie sur tout R,

cos : R → [−1, 1]

x 7→ cos(x) ,

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant
son domaine. La restriction standard est de prendre [0, π]. Ainsi,

cos : [0, π] → [−1, 1]

x 7→ cos(x)

est bijective.

Sa réciproque s’appelle l’arccosinus :

arccos : [−1, 1] → [0, π]

y 7→ arccos(y)

Comme on sait, son graphe est celui du cosinus, réfléchi à travers la diagonale du premier qua-
drant :
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Par définition,

arccos(cos(x)) = x ∀x ∈ [0, π] ,

cos(arccos(x)) = x ∀x ∈ [−1, 1] .

2.5.3 Réciproque de la tangente

La fonction tangente

tan : R \ {π
2
+ kπ , k ∈ Z} → R

x 7→ tan(x) ,

est surjective mais pas injective puisque périodique. On peut la rendre injective en restreignant
son domaine. La restriction standard est de prendre ]− π

2
, π
2
[. Ainsi,

tan :
]
−π
2
,
π

2

[
→ R

x 7→ tan(x)

est bijective.
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Sa réciproque s’appelle l’arctangente :

arctan : R →]− π
2
, π
2
[

y 7→ arctan(y)

Comme on sait, son graphe est celui de la tangente, réfléchi à travers la diagonale du premier
quadrant :

Par définition,

arctan(tan(x)) = x ∀x ∈]π
2
, π
2
[ ,

tan(arctan(x)) = x ∀x ∈ R .

2.6 Exponentielles et logarithmes

N’ayons pas peur des mots : les exponentielles et les logarithmes sont les fonctions les plus importantes
des mathématiques.

Or pour les définir précisément, comme fonctions d’une variable réelle x, on doit d’une façon ou
d’une autre passer par l’utilisation de la notion de limite. Ceci fait qu’on ne peut en principe pas
les utiliser avant des étapes plus avancées du cours.

Pourtant, leur importance fait qu’on est habitué à les manipuler depuis l’école, bien avant l’uni-
versité. Donc dans ce cours, le choix a été fait de les utiliser depuis le début, dans de nombreux
exemples.

Donc nous allons ici nous contenter de rappeler les propriétés qui caractérisent les exponentielles
et les logarithmes. Plus tard, nous reviendrons sur leur construction rigoureuse. (Voir ici (lien vers
la section m_fonctions_EXPLOG) et ici (lien vers la section m_fonctions_LOGEXP).)

2.6.1 Exponentielle de base a

Fixons un nombre a > 0, différent de 1, que l’on appelle base.

Si n ∈ N∗ = {1, 2, 3, . . . }, on définit
an := a · a · . . . · a︸ ︷︷ ︸

n fois

Cette notation compacte pour un produit a la propriété fondamentale suivante : pour toute paire
m,n ∈ N∗,

am+n = aman .

Cette propriété peut être utilisée comme fil conducteur pour étendre progressivement la fonction
n 7→ an à des valeurs de n plus générales.
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Pour commencer, voyons comment doit être défini “a0” si on impose que la propriété soit vérifiée
aussi pour n = 0. On peut alors écrire

a = a1 = a0+1 = a0a1 = a0a ,

et comme a > 0, on en déduit que
a0 = 1 .

Si on souhaite ensuite définir “an” pour des entiers négatifs, en imposant encore que la propriété
soit vérifiée, on peut écrire, pour tout n ∈ N∗,

1 = a0 = an+(−n) = ana−n ,

d’où on tire

a−n =
1

an
.

On a maintenant une fonction,

expa : Z → R∗
+

n 7→ expa(n) = an

La fonction exponentielle de base a est une généralisation de cette notion, où l’entier n peut être
remplacée par un réel x quelconque :

expa : R → R∗
+

x 7→ expa(x) ,

que l’on note souvent “ax” au lieu de “expa(x)”. Cette généralisation est faite de façon à ce que la
propriété fondamentale soit préservée :

ax+y = axay , ∀x, y ∈ R .

De plus, cette fonction est bijective :
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Remarquons que ax est croissante si a > 1, décroissante si 0 < a < 1.

2.6.2 Logarithme de base a

Étant bijective, la fonction exponentielle de base a possède une réciproque, appelée logarithme
de base a :

loga : R∗
+ → R
x 7→ loga(x) .

Par définition,

loga(expa(x)) = x ∀x ∈ R ,
expa(loga(y)) = y ∀y ∈ R∗

+ .

Sa propriété fondamentale est la suivante : pour tous x, y ∈ R∗
+,

loga(xy) = loga(x) + loga(y) .

Remarquons que loga(1) = 0, et que loga est croissante si a > 1, décroissante si 0 < a < 1.
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2.6.3 Changement de base

Si on connaît logb(x), comment calculer loga(x)?

Nommons ces nombres :

⋆ y1 = loga(x), qui est équivalent à x = ay1

⋆ y2 = logb(x), qui est équivalent à x = by2

On a alors
ay1 = by2 ,

et en prenant logb(·) des deux côtés,
y2 = y1 logb(a) .

On a donc la formule de changement de base :

loga(x) =
logb(x)

logb(a)
.

Cette formule fait qu’il suffit en général de choisir une base et de travailler avec ; les logarithmes
dans d’autres bases peuvent être obtenus à l’aide de cette formule.

2.6.4 La base e

Il existe une base pour laquelle les fonctions exponentielles et logarithme possèdent des propriétés
supplémentaires, qui les rendent plus faciles à manipuler. La base en question est notée “e”, où

e = 2.718281828459045235360287471352662497 . . .

Pour nous, ce nombre sera défini par la limite suivante (nous y reviendrons ici (lien vers la section
m_suites_serie_geometrique)) :

e = lim
n→∞

(
1 +

1

n

)n
.

Les exponentielles et logarithmes dans la base e sont généralement notés comme suit :

expe(x) ≡ exp(x) = ex ,

loge(x) ≡ log(x) .

Le logarithme log(x) est appelé logarithme naturel (ou népérien). On trouve souvent la notation
“ln(x)”, que nous n’utiliserons pas ici.

Pour plus de détails historiques consulter l’article Histoire des logarithmes et des exponentielles
(Wikipedia) (lien web).

2.7 Preuves par récurrence

La méthode de preuve par récurrence (appelée aussi preuve par induction) est une technique de dé-
monstration qui, quand elle s’applique, permet de démontrer une infinité d’affirmations en seule-
ment deux étapes.

(ici, Video: v_recurrence_NEW.mp4)
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2.7. Preuves par récurrence

Supposons que l’on définisse, pour chaque entier n ⩾ 1, une certaine propriété P(n). Pour chaque
n, P(n) est soit vraie, soit fausse.
Exemple 2.27. Soit P(n) =“le nombre entier n est divisible par 2”. Alors P(1) est fausse, P(2) est
vraie, P(3) est fausse, etc. Donc on peut tout de suite résoudre tous les cas : P(n) est vraie si n est
pair, fausse si n est impair. ⋄

En mathématiques, on a souvent besoin de montrer qu’une infinité de propriétés sont vraies si-
multanément : P(1) est vraie, P(2) est vraie, P(3) est vraie, etc.

Si ces propriétés P(n) n’ont rien à voir les unes avec les autres, on n’a d’autre alternative que de
les vérifier les unes après les autres.
Exemple 2.28. Supposons qu’un certain univers contienne une infinité de galaxies. Soit P(n) la
propriété “il existe, dans cet univers, une galaxie dans laquelle on peut trouver exactement n
planètes sur lesquelles on trouve de la vie”.

Si on fixe un n et qu’on se pose la question de savoir si P(n) est vraie ou fausse, on n’a qu’un
seul moyen d’obtenir la réponse : parcourir tout l’univers jusqu’à trouver une galaxie contenant
exactement n planètes sur lesquelles on trouve la vie. ⋄

Si on a de la chance, on peut espérer étudier la véracité de ces propriétés P(n) en profitant de
certaines relations pouvant exister entre elles, pour des n différents.

Dans le cas de la récurrence, on s’intéresse à une relation entre les paires d’entiers consécutifs, n
et n+ 1, et la relation considérée est la suivante : si P(n) est vraie, alors P(n+ 1) est vraie aussi.
Exemple 2.29. Dans l’exemple du dessus (galaxies), il n’y a aucune corrélation du genre entre les
propriétés P(n) pour des n différents, puisque savoir que P(n) est vraie n’implique pas forcément
que P(n+ 1) soit vraie aussi. ⋄
Exemple 2.30. Supposons que l’on ait devant nous une très longue table sur laquelle sont posés
une infinité d’ordinateurs, numérotés 1, 2, 3, . . .. On découvre avec effroi que sur chacun de ces
ordinateurs est installé un système opérationnel propriétaire, issu d’une grande compagnie.

On suppose que ces ordinateurs sont tous allumés, et que pour tout n, le n-ème ordinateur envoie
constamment des données non-cryptées vers son voisin n + 1. Dans ce cas, il est absolument
certain que si l’ordinateur n est infecté par un virus, alors l’ordinateur n + 1 est infecté aussi. En
d’autres termes, si on définit la propriété P(n) =“le nème ordinateur est infecté par un virus”, on
sait que si P(n) est vraie, alors P(n+ 1) est vraie aussi.

Ceci a la conséquence suivante : si un seul de ces ordinateurs est infecté, alors tous les suivants le
sont aussi. En particulier, si le premier est infecté, alors tous sont infectés. ⋄

La méthode de démonstration par récurrence consiste à donner une démonstration dans laquelle on
utilise une structure semblable à celle de ce dernier exemple. On la résume comme suit :

Montrer par récurrence qu’une infinité de propriétés P(n) (n = 1, 2, 3, . . .) sont vraies, cela consiste

1) à vérifier que la première propriété P(1) est vraie, (c’est l’initialisation), puis
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2) à vérifier que quel que soit l’indice n ⩾ 1, si P(n) est vraie, alors cela entraîne que P(n + 1)
est vraie aussi (c’est le pas d’induction).

Si on peut effectivement vérifier ces deux étapes, alors 1. implique que P(1) est vraie, mais alors
2. implique que P(2) est vraie aussi, mais alors 2. implique que P(3) est vraie aussi, etc. Par ce
procédé, on démontre donc bien que P(n) est vraie pour tout n ⩾ 1.

Informel 2.31. Pour que le pas d’induction ait une chance de fonctionner, il faut évidemment que
les propriétés P(n) et P(n+1) puissent être mises en relation, quel que soit n ! Et là, la difficulté est
de travailler avec un n quelconque, dont on ne spécifie pas la valeur ; dans les situations concrètes,
ceci implique en général un calcul littéral, dans lequel on manipule ce n inconnu.

Exemple 2.32. Nous allons montrer que pour tout n ∈ N∗,

1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2

Commençons par nommer les deux membres de l’identité ci-dessus, en posant

an := 1 + 2 + 3 + 4 + · · ·+ n , et bn :=
n(n+ 1)

2
.

Pour un n spécifique pas trop grand, on peut toujours le vérifier en calculant la valeur de an, puis
celle de bn, puis de voir si elles sont égales. Par exemple,

⋆ pour n = 1, on a a1 = 1 et b1 = 1·2
2

= 1, et donc a1 = b1

⋆ pour n = 2, on a a2 = 1 + 2 = 3 et b2 = 2·3
2

= 3, et donc a2 = b2.

On voit donc que a1 = b1 et a2 = b2.

On pourrait continuer à vérifier la relation “an = bn” pour des n toujours plus grands, en calculant
séparément les nombres an et bn “à la main”, et en vérifiant qu’ils sont effectivement égaux. Mais
ceci n’exclut pas qu’il existe un n, éventuellement très grand, pour lequel an ̸= bn !

Définissons donc, pour tout n ⩾ 1, la propriété P(n) comme étant : “pour l’entier n, on a an = bn”.
Montrons, par récurrence, que P(n) est vraie pour tout n ⩾ 1.

1) Initialisation : on a déjà vérifié plus haut, “à la main”, que a1 = b1, et donc on sait que P(1)
est vraie.

2) Pas d’induction : supposons que pour un n donné (dont on n’a pas besoin de spécifier la
valeur), P(n) est vraie , c’est-à-dire que l’on a effectivement

an = bn .

Pour montrer que ceci entraîne que P(n+1) est vraie, on va faire un calcul, à l’issue duquel
on obtiendra que an+1 = bn+1. Or la structure du problème fait que an+1 peut être relié à an.
En effet,

an+1 = 1 + 2 + 3 + 4 + · · ·+ n+ (n+ 1) = an + (n+ 1) .

Mais, puisque l’on est en train de supposer que an = bn, on peut l’utiliser et faire un peu
d’arithmétique :

an+1 = bn + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.
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Mais puisque
(n+ 1)(n+ 2)

2
=

(n+ 1)((n+ 1) + 1)

2
= bn+1 ,

on a bien montré que an+1 = bn+1. Ceci montre que si P(n) est vraie, alors P(n+ 1) est vraie
aussi.

On a donc bien montré que P(n) est vraie pour tout n ⩾ 1. ⋄
Remarque 2.33. En utilisant la même technique, on peut montrer que pour tout n ∈ N,

12 + 22 + 32 + 42 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

En fait il existe des formules semblables pour toute somme du type

1k + 2k + 3k + · · ·+ nk ,

où k ⩾ 1 est un entier. Voir ici (Mathologer) (lien web) pour plus d’informations. ⋄
Exemple 2.34. Posons, pour tout n ⩾ 1, an = 10n− 1, et considérons l’affirmation P(n) définie par
“an est un multiple de 9”.

1) Pour n = 1, on a a1 = 101 − 1 = 9, qui est un multiple de 9.

2) Supposons que P(n) est vraie, c’est-à-dire que an est un multiple de 9. Ceci s’exprime en
disant qu’il existe un entier k tel que an = 9k. Remarquons alors qu’on peut écrire

an+1 = 10n+1 − 1 = 10 · 10n − 1

= 10(an + 1)− 1

= 10(9k + 1)− 1 = 9(10k + 1︸ ︷︷ ︸
=:k′

) .

Or puisque k est un entier, k′ = 10k + 1 est aussi un entier. Donc an+1 = 9k′ : an+1 est aussi
un multiple de 9, et donc P(n+ 1) est vraie.

Ceci montre que P(n) est vraie pour tout n ⩾ 1. ⋄

2.7.1 La formule du binôme de Newton

Rappelons la définition des coefficients binômiaux. Pour un entier n ⩾ 1 quelconque, et pour
tout 1 ⩽ k ⩽ n, (

n

k

)
:=

n!

k!(n− k)!

En combinatoire,
(
n
k

)
compte le nombre de façons d’arranger k objets indistingables dans n boîtes

(un objet par boîte).

Lemme 4. (formule du binôme de Newton) Soient x, y ∈ R. Alors pour tout entier n ⩾ 1,

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk .

Preuve: (Voir la vidéo)

Voir aussi la vidéo de Michael Penn (lien web).
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