
Chapitre 1

Nombres : R

1.1 Introduction

On se représente souvent l’ensemble des nombres réels, noté R, comme tous les points d’une
droite :

Même si cette image est utile pour l’intuition (en particulier pour se représenter des distances ou
comparer des grandeurs), elle ne constitue évidemment pas une définition rigoureuse. En parti-
culier, elle n’exprime pas le fait que les réels se prêtent bien au calcul, à savoir à la manipulation
abstraite de quantités, qu’elles soient positives ou négatives, petites ou grandes.

De plus, les concepts fondamentaux de l’analyse (limite, continuité, dérivabilité, intégrabilité) se
définissent précisément à l’aide de quelques notions simples qui utilisent toute la structure des
réels.

Donc avant de commencer à présenter l’analyse à proprement parler, on se doit de définir quelles
sont exactement les propriétés qui caractérisent R. On listera en particulier les règles de calcul qui
donneront aux réels la structure de ce qu’on appelle un corps.

1.1.1 Nombres et mesures

La construction des nombres commence, en général, avec l’introduction des nombres naturels/entiers,
avec lesquels on peut déjà compter (“un mouton, deux moutons, trois moutons, ...”) :

N := {0, 1, 2, 3, 4, . . . } .
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1.1. Introduction

Puis viennent s’ajouter les entiers relatifs, obtenus à partir de N en rajoutant toutes les quantités
entières négatives (“il fait froid : −15 degrés !”, ou “3− 7 = −4”) :

Z := {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . } .

L’étape suivante est de considérer en plus toutes les proportions possibles entre deux grandeurs
entières (“un demi litre de lait”, “une heure et quart”, “deux tiers des étudiants”,...), pour obtenir
les nombres rationnels :

Q =
{
p
q

∣∣ p, q ∈ Z , q ̸= 0
}
.

Les rationnels contiennent Z (prendre q = 1), donc ils contiennent des nombres arbitrairement
grands, et peuvent être utilisés pour décrire des grandeurs astronomiques. Mais ils contiennent
aussi des quotients aussi petits que l’on veut ( 1

10
= 0.1, 1

100
= 0.01, etc.), et peuvent donc être

utilisés pour décrire des grandeurs atomiques ou subatomiques.

Pourquoi, alors, ne pas se contenter de garder Q pour faire de l’analyse?

Même s’il permet a priori de mesurer des grandeurs à toutes les échelles possibles nécessaires de
l’univers, Q souffre d’un défaut majeur : il ne permet pas de tout mesurer ! En effet, beaucoup de
grandeurs physiques sont des quantités irrationnelles.

Voyons deux exemples.

1.1.2 Irrationnalité de
√
2

L’école Pythagoricienne (env. 500BC) avait observé le fait suivant. Considérons un triangle rec-
tangle dont les deux cathètes ont longueur 1 :

La longueur de l’hypothénuse est donnée par la solution x > 0 de l’équation

x2 = 12 + 12 = 2 .

Lemme 5. Le nombre x, solution de l’équation x2 = 2, est irrationnel.

Preuve: On démontre l’affirmation par l’absurde.

Supposons que x ∈ Q, à savoir qu’il existe des entiers p et q tels x peut s’écrire x = p
q . On peut en fait

supposer que p et q sont premiers entre eux, c’est-à-dire qu’ils n’ont aucun diviseur commun (s’ils ont un
diviseur commun, on peut toujours simplifier la fraction).

Mais si x = p
q , alors x2 =

(p
q

)2
= 2, c’est-à-dire p2 = 2q2, ce qui implique que p2 est pair (un multiple de

2), et donc que p est pair aussi (exercice !). On peut alors écrire p sous la forme p = 2e, où e est un entier.
Ceci implique également que q2 = p2

2 = 2e2, et donc q, par le même argument qu’avant, est aussi pair.
Ceci implique que p et q sont tous deux divisibles par 2, ce qui représente une contradiction, puisqu’on a
supposé que p et q n’avaient aucun diviseur commun.
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Étant irrationnel, l’expansion décimale
√
2 n’a pas de “fin”, et ne présente aucun motif particulier

(pas de périodicité, etc.) :

√
2 = 1.414213562373095048801688724209 . . .

De nos jours, on connaît plus de dix mille milliards de décimales (lien web) de cette expansion.

“On sait que les nombres de ce genre (en parlant de
√
2) ont tourmenté Pythagore et son école

presque jusqu’à puisement. Étant accoutumés à des nombres si étranges depuis notre première
enfance, nous devons prendre garde à ne pas sous-estimer l’intuition mathématique de ces an-
ciens sages. Leur tourment était hautement honorable. Ils se rendaient compte qu’on ne peut
trouver aucune fraction dont le carré soit exactement égal à 2. On peut en donner des approxi-
mations très approchées, comme par exemple 17

12
, dont le carré, 289

144
, est très proche de 288

144
, c’est à

dire de 2. On peut s’approcher encore plus près de 2 en considérant des fractions constituées au
moyen de nombres plus grands que 17 et 12, mais on n’atteindra jamais exactement 2. ”

E. Schrödinger, Physique quantique et représentation du monde

1.1.3 Irrationnalité de π

Le nombre π est défini comme la longueur de la circonférence d’un disque dont le diamètre est
égal à 1 :

Il est surprenant d’apprendre que le développement décimal de ce nombre ne présente pas de
régularité apparente :

π = 3.1415926535897932384626433 . . .

On peut facilement trouver des rationnels qui approximent π à un niveau essentiellement arbi-
traire de précision (les décimales en rouge indiquent à partir d’où le rationnel cesse de donner
une bonne approximation) :

22

7
= 3.14285714286...

333

106
= 3.14150943396...

103993

33102
= 3.14159265301... etc.
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Pourtant, Johann Heinrich Lambert a montré en 1761 que π est irrationnel : il n’existe aucune paire
p, q ∈ N∗ telle que

π =
p

q
.

Pour une preuve relativement courte, mais qui requiert beaucoup des notions d’analyse présen-
tées dans ce cours, voir cette vidéo (lien web), ou encore celle-ci (lien web) (les deux présentent
la même preuve de l’irrationnalité de π, due à Niven).

1.1.4 Sur la construction de R

La circonférence du disque et l’hypothénuse du triangle ci-dessus sont loin d’être les seuls irra-
tionnels, donc cette discussion montre que même si Q constitue un ensemble de nombres allant
des échelles subatomiques à superastronomiques, il ne contient pas tous les nombres nécessaires
pour faire de la géométrie élémentaire : les irrationnels sont nécessaires. (Et en fait, dans un sens
que nous ne détaillerons pas ici, il y a beaucoup plus d’irrationnels qu’il n’y a de rationnels...)

Il y a donc, dans la construction d’un bon ensemble de nombres permettant de faire de l’analyse,
une étape finale, qui consiste à compléter Q en lui ajoutant tous les irrationnels pour obtenir R.
Cette construction est délicate, et nous ne la décrirons pas en détails car elle sortirait du cadre de
ce cours.

Mais ce que nous ferons, dans les sections suivantes, sera de définir R en listant ses propriétés.

Nous dirons d’abord que c’est, comme Q, un ensemble dans lequel on peut faire de l’arithmétique,
c’est à dire des calculs à l’aide d’opérations telles que addition et multiplication.

Puis nous exigerons de R une propriété additionnelle, naturelle mais délicate à formuler (voir
supremum et infimum plus loin), qui le distinguera radicalement de Q, et qui nous permettra de
commencer à construire l’analyse. (En passant, nous montrerons que dans R, l’existence de

√
2

est bien garantie.)

Ce que nous ne ferons pas, c’est de montrer qu’on peut effectivement construire un ensemble R
jouissant de toutes ces propriétés. Pour plus de détails sur la construction des réels, je renvoie
le lecteur aux livres d’analyse plus avancés. Par exemple : Les nombres irrationnels (Voyage au
pays des maths ARTE) (lien web). Plus élémentaire : Pour aller dans l’espace, de combien de
décimales de π a-t-on vraiment besoin? (lien web)

1.2 Règles de calcul : +,−, ·,÷

Les nombres réels forment avant tout un ensemble dans lequel on peut faire de l’arithmétique,
c’est-à-dire dans lequel on peut additionner, soustraire, multiplier et diviser. (En mathématiques,
un ensemble muni de ces opérations est appelé un corps. )

La première opération, l’addition notée “+”, est une opération qui associe à une paire de réels
x, y un nouveau réel noté x+ y. Cette opération satisfait aux propriétés suivantes :

1) x+ y = y + x pour toute paire x, y ∈ R
2) x+ (y + z) = (x+ y) + z pour tous x, y, z ∈ R
3) Il existe un élément 0 ∈ R, appelé élément neutre pour l’addition (ou simplement “zéro”),

tel que x+ 0 = 0 + x = x pour tout x ∈ R.

4) Pour tout x ∈ R il existe un unique élément noté −x ∈ R et appelé opposé de x, tel que
x+ (−x) = 0.
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1.3. Ordre : ⩽,⩾, <,>

Si x, y ∈ R, on peut définir leur soustraction :

x− y := x+ (−y) .

La deuxième opération, la multiplication, notée “·”, associe à une paire de réels x, y un nouveau
réel noté x · y. Elle satisfait aux propriétés suivantes :

1) x · y = y · x pour tous x, y ∈ R
2) x · (y · z) = (x · y) · z pour tout triplet x, y, z ∈ R
3) x · (y + z) = x · y + x · z pour tous x, y, z ∈ R,

4) Il existe un élément 1 ∈ R, appelé élément neutre pour la multiplication (ou simplement
“un”), tel que 1 · x = x · 1 = x pour tout x ∈ R.

5) Pour tout x ∈ R, x ̸= 0, il existe un unique élément noté x−1 ∈ R, appelé inverse de x, tel
que x · x−1 = x−1 · x = 1.

Souvent, on écrit xy au lieu de x · y.

Si x, y ∈ R et si y ̸= 0, on peut définir leur division :

x÷ y := x · y−1 .

En général, on écrit x
y

au lieu de x÷ y.
Remarque 1.1. Q est aussi muni de ces opérations, et les mêmes propriétés sont satisfaites. Ce
n’est pas le cas de N (dans lequel, par exemple, 3 n’a pas d’opposé), ni de Z (dans lequel, par
exemple, 2 n’a pas d’inverse). ⋄

1.3 Ordre : ⩽,⩾, <,>

La deuxième caractéristique de l’ensemble des nombres réels est que deux réels x, y peuvent tou-
jours être comparés. Si ils sont égaux, x = y, il n’y a pas lieu de les comparer, mais si ils sont
distincts, x ̸= y, alors il y en a nécessairement un qui est plus petit que l’autre :

⋆ Si x est plus petit que y, on note x < y.

⋆ Si x est plus grand que y, on note x > y.

Le fait que l’on puisse ainsi comparer n’importe quelle paire de réels distincts représente ce qu’on
appelle un ordre total .
L’ordre total représente l’intuition que nous avons pour la position relative de deux points sur
une droite. x < y : “x est à gauche de y”, x > y : “x est à droite de y”,
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Lorsqu’on veut comparer deux réels sans forcément se préoccuper de savoir s’ils sont distincts :

⋆ Si x est plus petit ou égal à y, on note x ⩽ y.

⋆ Si x est plus grand ou égal à y, on note x ⩾ y.

Exemple 1.2. Toutes les inégalités ci-dessous sont vraies :

0 < 1
2
⩽ 1 , 1 ⩾ 1 , 3 < π < 4 ⩽ 4.1 .

Par contre, les suivantes sont fausses :

0 > 0 , −1 < −2 , 0.99999 · · · < 1 .

⋄

Énonçons les propriétés des relations “⩽,⩾, <,>” :

1) Pour toute paire x, y ∈ R, on a soit x ⩽ y, soit y ⩽ x. Si on a à la fois x ⩽ y et y ⩽ x, alors
x = y.

2) x ⩽ x pour tout x ∈ R.

3) Si x ⩽ y et y ⩽ z, alors x ⩽ z.

4) Si x ⩽ y, alors x+ z ⩽ y + z pour tout z ∈ R.

5) Si 0 ⩽ x et 0 ⩽ y, alors 0 ⩽ x · y

Informel 1.3. La troisième propriété est constamment utilisées en analyse. En effet, pour montrer
qu’un nombre x est plus petit ou égal à un nombre z, on passera souvent par l’utilisation d’un
réel intermédiaire y, et on vérifiera les deux relations “x ⩽ y”, “y ⩽ z”, qui ensemble garantissent
que x ⩽ z.

1.3.1 Signe

Un réel x ∈ R est dit

⋆ positif (resp. strictement positif) si x ⩾ 0 (resp. x > 0),

⋆ négatif (resp. strictement négatif) si x ⩽ 0 (resp. x < 0).

1.4 Intervalles

Avant de compléter la définition de R, utilisons les relations d’ordre, ⩽, <,>,⩾, pour introduire
certains sous-ensembles particuliers de R appelés intervalles.
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1.5. Valeur absolue et distance

Soient a, b ∈ R, a < b. On définit les intervalles bornés :

[a, b] := {x ∈ R : a ⩽ x ⩽ b} , (1.1)
]a, b[ := {x ∈ R : a < x < b} , (1.2)
[a, b[ := {x ∈ R : a ⩽ x < b} , (1.3)
]a, b] := {x ∈ R : a < x ⩽ b} , (1.4)

On dit que ]a, b[ est ouvert, et que [a, b] est fermé. (On reviendra plus loin sur les notions d’en-
semble borné/ouvert/fermé, qui sont générales et ne s’appliquent pas uniquement aux inter-
valles.) Pour représenter ces intervalles graphiquement, on utilisera une boule pleine pour indi-
quer que l’extrémité de l’intervalle est inclue, et vide pour indiquer que l’extrémité est exclue.
Donc on représente [a, b[ comme suit :

Ensuite, introduisons les intervalles non-bornés :

[a,+∞[ := {x ∈ R : x ⩾ a} ,
]a,+∞[ := {x ∈ R : x > a} ,
]−∞, b] := {x ∈ R : x ⩽ b} ,
]−∞, b[ := {x ∈ R : x < b} .

On définit en particulier les ensembles des réels positifs et strictement positifs,

R+ := {x ∈ R : x ⩾ 0} = [0,∞[ , (1.5)
R∗

+ := {x ∈ R : x > 0} =]0,∞[ , (1.6)

ainsi que les ensembles des réels négatifs et strictement négatifs,

R− := {x ∈ R : x ⩽ 0} =]−∞, 0] , (1.7)
R∗

− := {x ∈ R : x < 0} =]−∞, 0[ . (1.8)

1.5 Valeur absolue et distance
Définition 1.4. La valeur absolue de x ∈ R est définie par

|x| :=


x si x > 0 ,

0 si x = 0 ,

−x si x < 0 .

Exemple 1.5. ⋆ Puisque 7
8
> 0, on a |7

8
| = 7

8
.

⋆ Puisque −3 < 0, on a | − 3| = −(−3) = 3.
⋄

Les propriétés suivantes suivent de la définition : pour tous x, y ∈ R,

1) |x| ⩾ 0
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2) | − x| = |x|
3) |x| = 0 si et seulement si x = 0

4) −|x| ⩽ x ⩽ |x|
5) Si a ⩾ 0, alors |x| ⩽ a si et seulement si −a ⩽ x ⩽ +a.

6) |x · y| = |x| · |y|
7) Si y ̸= 0, |x

y
| = |x|

|y| .

8) Si on divise un réel non-nul x par sa valeur absolue, on obtient son signe :

x

|x|
=

{
+1 si x > 0 ,

−1 si x < 0 .

Proposition 2. (Inégalité triangulaire) Pour tous x, y ∈ R,

|x+ y| ⩽ |x|+ |y| .

Preuve: Si x+ y ⩾ 0, alors
|x+ y| = x+ y ⩽ |x|+ |y| .

Si x+ y < 0, alors
|x+ y| = −(x+ y) = (−x) + (−y) ⩽ |x|+ |y| .

L’inégalité triangulaire sera utilisée très souvent lorsqu’on aura besoin d’estimer des sommes de
réels. Plus précisément, considérons la somme de deux nombres x et y, que l’on sait être “petits”
dans le sens où on a trouvé un ε > 0 tel que |x| ⩽ ε et |y| ⩽ ε. (Remarquons que ceci n’implique
rien sur les signes des nombres x et y.) Alors, l’inégalité triangulaire permet de garantir que

|x+ y| ⩽ |x|+ |y| ⩽ ε+ ε = 2ε ,

et donc
−2ε ⩽ x+ y ⩽ 2ε .

Remarque 1.6. On peut utiliser la valeur absolue pour caractériser le nombre “zéro” : c’est l’unique
nombre dont la valeur absolue est plus petite que tout nombre positif :

x = 0 ⇐⇒ |x| = 0 ⇐⇒ |x| ⩽ ε ∀ε > 0 .

⋄

1.5.1 Distance

La valeur absolue permet de mesurer la proximité de deux réels x, y,∈ R, en définissant leur
distance :

dist(x, y) := |x− y| .

Lemme 6. (Propriétés de la distance)

1) dist(x, y) ⩾ 0 pour tous x, y ∈ R. De plus, dist(x, y) = 0 si et seulement si x = y.

2) dist(x, y) = dist(y, x) pour tous x, y ∈ R
3) Pour tous x, y, z ∈ R,

dist(x, y) ⩽ dist(x, z) + dist(z, y) .
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1.6. Supremum et infimum

Preuve: Les deux premières affirmations suivent directement des propriétés de la valeur absolue. Pour la
troisième, on insère −z + z = 0, et on utilise l’inégalité triangulaire :

dist(x, y) = |x− y| = |(x− z) + (z − y)|
⩽ |x− z|+ |z − y|
= dist(x, z) + dist(z, y) .

Remarque : En géométrie Euclidienne, l’inégalité triangulaire dit que le chemin direct allant d’un point A à
un point B est plus court que tout autre chemin (rectiligne) passant par un point intermédiaire C :

dist(A,B) ⩽ dist(A,C) + dist(C,B) .

On utilisera souvent les équivalences suivantes :

dist(x, a) ⩽ ε ⇐⇒ |x− a| ⩽ ε

⇐⇒ a− ε ⩽ x ⩽ a+ ε

⇐⇒ x ∈ [a− ε, a+ ε]

1.6 Supremum et infimum

Ici, nous introduirons la propriété cruciale qui différencie les réels des rationnels. En particulier,
nous verrons comment cette propriété permet de garantir que dans R, l’équation x2 = 2 possède
bel et bien une solution.

Avant de commencer, il nous faut introduire un peu de terminologie.

1.6.1 Minimum, maximum

L’ordre introduit plus haut sur R permet de distinguer certains éléments d’un sous-ensemble de
R.

Définition 1.7. Soit A un sous-ensemble non-vide de R.

⋆ Un élément x∗ ∈ A est dit maximal si x ⩽ x∗ ∀x ∈ A. On dit aussi que x∗ est le maximum de
A, et on note : x∗ = maxA.

⋆ Un élément x∗ ∈ A est dit minimal si x∗ ⩽ x ∀x ∈ A. On dit aussi que x∗ est le minimum de
A, et on note : x∗ = minA.

Exemple 1.8.

max{−1,−3,−5, 2, 1} = 2

min{−1,−3,−5, 2, 1} = −3 .

⋄
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1.6. Supremum et infimum

On réalise que quand un ensemble contient un nombre fini d’éléments, alors il possède toujours
un minimum et un maximum. En d’autres termes, une liste finie de nombres contient toujours
un plus grand et un plus petit élément. Par contre, lorsque l’ensemble possède un nombre infini
d’éléments, l’existence d’un minimum ou maximum n’est plus garantie.
Exemple 1.9. Vu comme sous-ensemble des réels, l’ensemble des entiers N = {0, 1, 2, 3, . . . } ⊂ R
possède un élément minimal, minN = 0, mais il ne possède pas d’élément maximal. ⋄
Exemple 1.10. Considérons l’ensemble (la couleur, c’est juste pour voir l’ensemble sur le dessin
du dessous) de tous les nombres de la forme x = 1

n
, où n > 0 est un entier :

A =
{
1, 1

2
, 1
3
, 1
4
, 1
5
, . . .

}
Clairement, A possède un élément maximal : x∗ = maxA = 1. En effet, x ⩽ 1 pour tout x ∈ A, et
de plus 1 ∈ A :

Par contre, A ne possède pas de minimum. En effet, aucun élément de A n’est plus petit que les
autres. ⋄
Exemple 1.11. Soit B = [0, 1[. D’abord, B possède un minimum, donné par x∗ = minB = 0. (En
effet, 0 ⩽ x pour tout x ∈ B, et 0 ∈ B.) Par contre, B n’a pas de maximum. En effet, pour tout
x ∈ B, il existe toujours un autre élément x′ ∈ B tel que x′ > x. On peut par exemple prendre
x′ := x+1

2
, qui est le point milieu entre x et 1 :

Donc aucun élément de B n’est maximal. ⋄
Exemple 1.12. Considérons le sous-ensemble de R :

C = {x ∈ Q : x < 2} .

Par définition, C est composé de tous les rationnels x = p
q
, tels que p

q
< 1. On a donc, par exemple,

2
3
∈ C, 7

6
∈ C, 199

100
∈ C, etc.

C n’a pas de minimum puisque −n ∈ C pour tout entier n, et C n’a pas de maximum non plus

puisque pour tout p
q
∈ C, on a aussi

p
q
+2

2
⋄

1.6.2 Majorants, minorants

Définition 1.13. Soit A ⊂ R.

1) A est majoré si il existe M ∈ R tel que x ⩽ M pour tout x ∈ A ; on dit qu’un tel M majore
A, ou que c’est un majorant pour A.

2) A est minoré si il existe m ∈ R tel que x ⩾ m pour tout x ∈ A ; on dit qu’un tel m minore A,
ou que c’est un minorant pour A.

3) Si A est à la fois majoré et minoré, il est borné.
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Exemple 1.14. B = [0, 1[ est majoré ; M = 1, M = 2 sont des majorants. En fait, n’importe quel
M ⩾ 1 majore B.

Par contre, M = 0.9 n’est pas un majorant ; en effet, si on prend par exemple le point x = 0.95,
alors x ∈ B, et x > M . B est aussi minoré : n’importe quel réel m ⩽ 0 minore B.

⋄

Informel 1.15. Un ensemble A est borné si et seulement si il peut être “rangé dans une boîte”,
c’est-à-dire placé à l’intérieur d’un intervalle [m,M ], où m et M sont des nombres finis.

Exemple 1.16. Vus comme sous-ensembles de R,
⋆ N est minoré puisque 0 ⩽ n pour tout n ∈ N. Par contre N n’est pas majoré. En effet, pour

tout M ∈ R, il existe un n ∈ N tel que n > M . Nous utiliserons ceci constamment par la suite.
⋆ Z n’est ni minoré, ni majoré.

⋄

1.6.3 Supremum, infimum

Passons maintenant à la notion essentielle de ce chapitre sur les réels :

Définition 1.17. Soit A ⊂ R un ensemble non-vide.

Un réel s ∈ R est appelé borne supérieure (ou supremum) de A si

1) s majore A (c.-à-d. que x ⩽ s pour tout x ∈ A),

2) s est le plus petit majorant de A (c.-à-d. que pour tout s′ < s, il existe x ∈ A tel que x > s′).

Si s est supremum de A, on le note s = supA.

Un réel s ∈ R est appelé borne inférieure (ou infimum) de A si

1) s minore A (c.-à-d. que x ⩾ s pour tout x ∈ A),

2) s est le plus grand minorant de A (c.-à-d. que pour tout s′ > s, il existe x ∈ A tel que x < s′).

Si s est l’infimum de A, on le note s = inf A.

Remarque 1.18. Il est clair que
⋆ Si A possède un élément maximal, alors supA = maxA.
⋆ Si A possède un élément minimal, alors inf A = minA.

Mais en général, le maximum et le minimum peuvent ne pas exister, alors que le supremum et
l’infimum comme on verra, existent toujours dans les réels. ⋄

On reformulera souvent la deuxième condition, dans le supremum par exemple, en disant que
pour tout ε > 0 il existe un x ∈ A tel que

s− ε ⩽ x ⩽ s .

Informel 1.19. (Interprétation “physique” de l’infimum et du supremum pour un ensemble
borné.) On a dit qu’un ensemble A borné peut toujours être “rangé dans une boîte” [m,M ]. Et
bien parmi toutes les boîtes qui contienne A, la plus petite est celle pour laquelle m = inf A et
M = supA.
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1.6. Supremum et infimum

Exemple 1.20. Reprenons l’ensemble de tout à l’heure :

A =
{
1, 1

2
, 1
3
, 1
4
, 1
5
, · · · 1

n
, 1
n+1

, . . .
}
.

Puisque 1 ∈ A et que tout x ∈ A est plus petit ou égal à 1, 1 est l’élément maximal de A, et
supA = maxA = 1.

Vérifions maintenant que inf A = 0. D’abord, 0 minore A puisque tout nombre de la forme 1
n

est
plus grand ou égal à 0. Pour montrer que 0 est le plus grand minorant, considérons un nombre
quelconque s′ > 0, et montrons que s′ n’est pas un minorant pour A. En effet, si s′ > 0, alors il
existe un entier n ⩾ 1 tel que n > 1

s′
, ce qui est équivalent à 1

n
< s′. Or comme 1

n
∈ A, ceci montre

que s′ minore pas A.

On a donc bien montré que 0 est le plus grand minorant : inf A = 0.

⋄
Exemple 1.21. Soit encore B = [0, 1[. On a vu que B n’a pas de maximum; montrons maintenant
que supB = 1.

1) Premièrement, on a x ⩽ 1 pour tout x ∈ B, donc B est majoré par 1.

2) Deuxièmement, si s′ < 1, alors il existe x̃ ∈ B tel que x̃ > s′. En effet, si s′ < 0, n’importe
quel x̃ ∈ B suffit. Sinon, si 0 ⩽ s′ < 1, on peut par exemple prendre x̃ := s′+1

2
.

Ensuite, on a inf B = 0. En effet, 0 est le plus grand minorant :

1) 0 ⩽ x pour tout x ∈ B, et

2) pour tout s′ > 0, il existe un x ∈ B tel que x < s′

⋄

1.6.4 La différence entre R et Q

Passons à l’axiome qui confère à R une propriété qui permet de l’utiliser pour faire de l’analyse :
Dans R,

⋆ tout ensemble non-vide majoré possède un supremum,

⋆ tout ensemble non-vide minoré possède un infimum.

Pour des ensembles qui ne sont pas bornés, la convention suivante est parfois adoptée (ce n’est
qu’une notation) :

⋆ Si A n’est pas majoré, supA := +∞.

⋆ Si A n’est pas minoré, inf A := −∞.

Exemple 1.22. Calculons l’infimum/supremum de l’ensemble

B =
{
x ∈ R+ : sin(x) > 1

2

}
.

Remarquons pour commencer que

sin(x) > 1
2

⇔ x ∈
]
π
6
+ 2kπ, 5π

6
+ 2kπ

[
, k ∈ Z
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1.7. Solutions de x2 = 2

Comme on veut x ∈ R+, on doit se restreindre à k ∈ N, ce qui donne

B =
⋃
k∈N

]
π
6
+ 2kπ, 5π

6
+ 2kπ

[
=]π

6
, 5π

6
[∪ ]13π

6
, 17π

6
[∪ · · ·

On a donc inf B = π
6
, et comme cet ensemble n’est pas majoré, supB = +∞. ⋄

1.7 Solutions de x2 = 2

Revenons à la question posée précédemment : si l’équation

x2 = 2

ne possède pas de solution dans Q, en possède-t-elle une dans R?

Montrer qu’il existe effectivement un x ∈ R tel que x2 = 2, “directement” est trop difficile. On fait
donc un petit détour, en commençant par définir l’ensemble

A := {x ∈ R+ : x2 < 2} .

Remarquons que par exemple 0 ∈ A, ou encore 1 ∈ A, et donc A n’est pas vide.

Lemme 7. A n’a pas d’élément maximal.

Preuve: Il s’agit de montrer que pour tout élément x ∈ A, il existe toujours un x′ ∈ A qui est strictement
plus grand que x.

Cherchons un x′ de la forme x′ = x+ 1
n , avec n ∈ N∗. Dans ce cas,

x′2 = (x+ 1
n)

2 = x2 +
2x

n
+

1

n2
.

Puisque n ⩾ 1, on peut majorer : 1
n2 ⩽ 1

n . Ainsi,

x′2 ⩽ x2 +
2x

n
+

1

n
= x2 +

2x+ 1

n
.

Puisqu’on veut x′ ∈ A, c’est-à-dire x′2 < 2, imposons

x2 +
2x+ 1

n
< 2 ,

qui est équivalente à

n >
2x+ 1

2− x2
.

Le membre de droite est bien défini et positif puisque 2−x2 > 0. Et un n satisfaisant à cette propriété existe
toujours puisque, quelle que soit la valeur de 2x+1

2−x2 , il existe toujours un n plus grand que ce nombre (ceci
découle du fait que N n’est pas majoré). Si on prend un tel n, on a donc x′ = x+ 1

n > x, et

x′2 = (x+ 1
n)

2 = x2 +
2x

n
+

1

n2

< x2 +
2x

n
+

1

n

= x2 +
2x+ 1

n

< x2 +
2x+ 1
2x+1
2−x2

= 2 .
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1.7. Solutions de x2 = 2

Ceci montre que A n’a pas d’élément maximal.

Ensuite, remarquons que A est majoré : x ⩽ 3 pour tout x ∈ A. En effet, si x > 3, alors x2 > 9 > 2,
et donc x ̸∈ A.

On peut maintenant considérer le réel défini comme le supremum de A :

s := supA .

Théorème 1.23. Le nombre s défini ci-dessus satisfait s2 = 2.

Preuve: Si on avait s ∈ A, cela impliquerait que s est un élément maximal pour A. Comme on vient de voir
que A ne possède pas d’élément maximal, on en déduit que s ̸∈ A, et donc que

s2 ⩾ 2 .

Nous allons maintenant montrer que
s2 ⩽ 2 .

Pour ce faire, commençons par définir le réel

M :=
2 + s2

2s

et montrons que M majore A. En effet, observons que si x > M , alors

x2 = (s+ (x− s))2 = s2 + 2s(x− s) + (x− s)2︸ ︷︷ ︸
⩾0

⩾ s2 + 2s(x− s)

> s2 + 2s(M − s)

= s2 + 2s
(
2+s2

2s − s
)
= 2 ,

et donc x ̸∈ A. Ceci implique que si x ∈ A, alors x ⩽M ; doncM majoreA. Mais, comme s est par définition
le plus petit majorant de A, on a que s ⩽M , c’est-à-dire

s ⩽
2 + s2

2s
,

qui est équivalente à s2 ⩽ 2.

Comme s2 est à la fois ⩾ 2 et ⩽ 2, ceci implique s2 = 2.

Le nombre s est appelé racine carrée de deux (lien web), et est noté

s =
√
2 .

Puisque
√
2 ∈ R mais

√
2 ̸∈ Q comme on a vu,

√
2 est par définition irrationnel .

1.7.1 La fonction “racine”

On peut, en utilisant la même idée que celle présentée dans la preuve de la section précédente,
montrer que pour tout y ∈ R+, l’équation

x2 = y

possède une solution dans R+.
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1.8. Densité dans R

Cette analyse montre que la fonction

f : R+ → R+

x 7→ x2

et une surjection. On montre ici (lien vers la section m_fonctions_generalites_fonctions_
reelles) que c’est également une injection, et donc que cette fonction est une bijection.

Si y ⩾ 0, l’unique x ⩾ 0 tel que x2 = y se note x =
√
y, et se nomme racine carrée de y. Toute la

fonction réciproque s’appelle la fonction racine carrée :

f−1 : R+ → R+

x 7→
√
x

Comme on sait, son graphe s’obtient en réfléchissant celui de f(x) = x2 à travers la diagonale du
premier quadrant :

Remarque 1.24. La méthode se généralise, et permet de montrer que pour tout n ∈ N∗, et pour
tout y ∈ R+, l’équation

xn = y

possède une unique solution dans R+. Celle-ci se note n
√
y et se nomme racine n-ème de y. ⋄

L’utilisation de la notion de supremum/infimum, pour construire la racine carrée ci-dessus, n’est
évidemment qu’un exemple de ce que l’on peut faire dans les réels. Comme on verra dans la
suite, l’utilisation de ces notions sera utilisée constamment, et fournira un socle sur lequel toute
l’analyse réelle pourra être construite.

1.8 Densité dans R

Intuitivement, même si les rationnels sont un sous-ensemble (strict) des réels, ils doivent quand-
même être un peu “partout” sur la droite des réels, dans le sens où on doit pouvoir en trouver
dans n’importe quelle région de la droite, aussi petite soit-elle. On caractérise ceci précisément à
l’aide de la notion de densité.

Définition 1.25. Un sous-ensemble E ⊂ R est dense dans R si pour toute paire x, y ∈ R, x < y, il
existe un z ∈ E tel que x < z < y.
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1.8. Densité dans R

Il est clair que R est dense dans lui-même, puisque pour toute paire x, y ∈ R, x < y, on peut
toujours considérer le point milieu z := x+y

2
. Donc entre deux réels quelconques distincts, il y a

toujours un autre réel.

Ce qui est plus intéressant, ce sont les ensembles denses dans R qui sont des sous-ensembles
stricts de R, c’est-à-dire qui sont plus petits que R.

Théorème 1.26. L’ensemble des rationnels Q est dense dans R.

Dans la preuve de ce théorème, nous utiliserons la notion suivante.

Définition 1.27. Pour tout x ∈ R, la valeur entière de x, notée ⌊x⌋, est le plus grand entier n ∈ Z
tel que n ⩽ x.

Exemple 1.28.
⌊5
4
⌋ = 1 , ⌊−1

3
⌋ = −1 , ⌊−

√
2⌋ = −2 , ⌊π⌋ = 3 .

⋄

La définition de ⌊x⌋ implique

⌊x⌋ ⩽ x < ⌊x⌋+ 1 ∀x ∈ R .

Donc l’image qu’il faut garder en tête est la suivante :

Cette dernière peut aussi s’écrire

x− 1 < ⌊x⌋ ⩽ x ∀x ∈ R .

Passons à la preuve du théorème.
Preuve: Soient deux réels x < y, et soit n un entier suffisamment grand, tel que n > 1

y−x . On rappelle qu’un
tel entier existe car N n’est pas borné. Posons maintenant

r :=
⌊nx⌋+ 1

n
.

Comme c’est un quotient de deux entiers, r est rationnel. Et puisque

nx− 1 < ⌊nx⌋ ⩽ nx ,

on a
(nx− 1) + 1

n︸ ︷︷ ︸
=x

< r ⩽
nx+ 1

n︸ ︷︷ ︸
=x+ 1

n
<y

,

ce qui implique x < r < y.

La conséquence principale de ce résultat est que l’on peut approximer les réels par des rationnels,
dans le sens suivant :

Corollaire 4. Soit x ∈ R un réel quelconque. Alors pour tout ε > 0, il existe un rationnel p
q
∈ Q tel que

|x− p
q
| ⩽ ε.
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1.9. Ensembles ouverts et fermés

Preuve: Posons x′ := x − ε, y′ = x + ε. Par le Théorème, il existe un rationnel pq tel que x′ < p
q < y′, ce qui

implique bien que −ε ⩽ x− p
q ⩽ +ε.

En particulier, n’importe quel irrationnel peut être approximé par un rationnel, à un degré arbi-
traire de précision.
Exemple 1.29. Nous avons donné des approximations de π dans l’introduction. Dans le langage
de la présente section, ces approximations s’expriment ainsi :∣∣∣π − 22

7

∣∣∣ ⩽ 0.01∣∣∣π − 333

106

∣∣∣ ⩽ 0.0001∣∣∣π − 103993

33102

∣∣∣ ⩽ 0.000000001

Donc même si π est irrationnel, on sait maintenant qu’on peut fixer un ε > 0 aussi petit que l’on
veut, et le théorème garantit qu’il existe un rationnel p

q
à distance au plus ε de π :∣∣∣π − p

q

∣∣∣ ⩽ ε .

⋄

Il se trouve que les irrationnels, eux aussi, permettent d’approximer n’importe quel réel :

Théorème 1.30. L’ensemble des irrationnels R \Q est dense dans R.

Preuve: (exercice)

On utilisera souvent les deux résultats ci-dessus, de la façon suivante : Si x ∈ R est un réel quel-
conque, alors quel que soit ε > 0 (sous-entendu : aussi petit que l’on veut), il existe toujours un
rationnel r∗ ∈ Q et un irrationnel i∗ ∈ R \Q tels que

r∗ ∈ ]x− ε, x+ ε[ , i∗ ∈ ]x− ε, x+ ε[ .

1.9 Ensembles ouverts et fermés

La notion de “ouvert/fermé”, introduite précédemment pour les intervalles, est en fait une notion
plus générale, et s’applique à d’autres sous-ensembles de R :

Définition 1.31. Soit G ⊂ R.

1) G est ouvert si pour tout x ∈ G il existe un ε > 0 tel que

]x− ε, x+ ε[⊂ G ,

c.-à-d. tel que x′ ∈ G pour tout x′ ∈]x− ε, x+ ε[.

2) G est fermé si son complémentaire (c.-à-d. Gc := R \G) est ouvert.

Un intervalle ouvert (au sens des sections précédentes) est effectivement ouvert au sens de la défi-
nition qui précède :
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1.9. Ensembles ouverts et fermés

Exemple 1.32. Considérons G =]0, 1[. Si on fixe un x ∈ G quelconque, alors en prenant un nombre
ε > 0 qui est à la fois plus petit que |x| (distance de x à l’extrémité gauche de l’intervalle) et
que |x − 1| (distance de x à l’extrémité droite de l’intervalle), alors l’intervalle ]x − ε, x + ε[ est
entièrement contenu dans G. Clairement, le choix du ε dépend de où se trouve x : plus x est
proche du bord, plus ε doit être pris petit. L’essentiel est que pour tout x ∈ G, on trouve toujours
un ε > 0 tel que ]x − ε, x + ε[⊂ G. (Sur l’animation ci-dessous, on a épaissi un peu pour y voir
quelque chose.) ⋄

De la même façon, on montre que les intervalles de la forme ]−∞, a[ et ]b,+∞[ sont ouverts.
Exemple 1.33. G = {x ∈ R : x2 < 2} est ouvert (voir exercices) ⋄

Proposition 3. Si un ensemble G ⊂ R est une union d’ensembles ouverts, alors il est ouvert.

Preuve: On donne la preuve dans le cas où G est une union finie d’ouverts Gk :

G = G1 ∪G2 ∪G3 ∪ · · · ∪Gn .

Si x ∈ G, alors il existe au moins un indice k tel x ∈ Gk. Mais puisque Gk est ouvert, on sait qu’il existe
ε > 0 tel que ]x− ε, x+ ε[⊂ Gk. Comme Gk ⊂ G, ceci implique ]x− ε, x+ ε[⊂ G.

Exemple 1.34. Considérons G = [a, b]. Cet ensemble n’est pas ouvert, puisque quel que soit la
valeur de ε > 0, l’intervalle ]a − ε, a + ε[ contient des points qui ne sont pas dans G (utilisez
l’animation ci-dessus pour l’apprécier !). De plus, puisque son complémentaire est

Gc = [a, b]c =]−∞, a[∪]b,+∞[ ,

qui est une union d’ouverts, Gc un ouvert. Donc G est fermé. ⋄
Exemple 1.35. ⋆ Un ensemble contenant un seul point, {x}, est fermé. En effet, son complé-

mentaire est {x}c = ]−∞, x[ ∪ ]x,+∞[, qui est ouvert.

⋆ Z est fermé. En effet, son complémentaire est

Zc =
⋃
n∈Z

]n, n+ 1[ ,

et donc une union d’ouverts, donc c’est un ouvert.
⋄

Il existe des ensembles qui ne sont ni ouverts, ni fermés.
Exemple 1.36. Si a < b, alors I = [a, b[ n’est ni ouvert ni fermé. En effet,

⋆ I n’est pas ouvert, car si on prend x = a, alors il n’existe aucun ε > 0 tel que ]x− ε, x+ ε[⊂ I .

⋆ I n’est pas fermé non plus, parce que son complémentaire est Ic =]−∞, a[∪[b,+∞[, et si on
prend cette fois x′ = b, alors il n’existe aucun ε > 0 tel que ]x′ − ε, x′ + ε[⊂ Ic.

⋄
Exemple 1.37. Q n’est ni ouvert ni fermé.
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1.9. Ensembles ouverts et fermés

⋆ Q n’est pas ouvert. En effet, fixons un r ∈ Q. On a dit plus haut que les irrationnels sont
denses dans R, donc quel que soit ε > 0, l’intervalle ]r − ε, r + ε[ contient toujours un irra-
tionnel. Donc il n’existe aucun ε > 0 tel que ]r − ε, r + ε[⊂ Q.

⋆ Q n’est pas fermé. En effet, son complémentaire est l’ensemble de tous les irrationnels, et
n’est pas ouvert non plus : puisque les rationnels sont denses dans R, pour tout irrationnel
y, un intervalle ]y − ε, y + ε[ contient toujours un rationnel, quel que soit ε > 0.

⋄

NumChap: chap-nombres-reels, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 19

botafogo.saitis.net

