
Chapitre 2

Nombres : C

2.1 Introduction

Les nombres complexes sont apparus de manière “accidentelle”, en 1545, lorsqe Cardan généra-
lisa une méthode (inventée par Tartaglia) pour résoudre des équations du troisième degré de la
forme

x3 + px+ q = 0 ,

en la variable réelle x. Sa méthode était innovante du fait qu’elle passait par un calcul qui mani-
pulait “

√
−1” comme si c’était une quantité réelle.

Une vidéo qui présente l’histoire de cette méthode : How imaginary numbers were invented
(Veritasium) (lien web)

Ce n’est que plus tard que les complexes furent introduits et étudiés de manière systématique,
par Gauss en particulier.

Après les avoir introduit de manière axiomatique, nous présenterons quelques notions élémen-
taires au sujet des nombres complexes, en particulier leur représentation dans le plan complexe,
et la formule de Moivre. Nous utiliserons aussi quelques-unes de leurs propriétés dans la factorisa-
tion de polynômes, qui sera utilisée tout à la fin du cours dans le calcul de certaines primitives de
fonctions réelles.

2.2 Définition

Comme R, l’ensemble des nombres complexes, noté C, est un corps, c’est-à-dire un ensemble
muni des opérations +,−, ·,÷, satisfaisant aux propriétés usuelles.

Ce qui rend ce corps particulier est qu’il est formé de paires de réels, pour lesquelles la définition
d’un produit “·” n’est pas forcément naturelle :

Définition 2.1. On note C l’ensemble des paires de réels, z = (x, y), muni des deux opérations
suivantes. Si z = (x, y) et z′ = (x′, y′),

⋆ leur addition est définie
z + z′ := (x+ x′, y + y′) ,

⋆ et leur multiplication par
z · z′ :=

(
xx′ − yy′, xy′ + x′y

)
.

Exemple 2.2. (1, 2) · (−3, 4) = (−11,−2). ⋄
Exemple 2.3. (α, 0) · (x, y) = (αx− 0 · y, αy + 0 · x) = (αx, αy). ⋄
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2.2. Définition

Lemme 8. (Propriétés des opérations + et ·)
1) z + z′ = z′ + z pour toute paire z, z′ ∈ C
2) z + (z′ + z′′) = (z + z′) + z′′ pour tous z, z′, z′′ ∈ C
3) L’élément (0, 0) est appelé élément neutre pour l’addition, puisque z + (0, 0) = (0, 0) + z = z

pour tout z ∈ C.

4) Pour tout z ∈ C il existe un unique élément noté −z ∈ C et appelé opposé de z, tel que z+(−z) = 0.
En fait, si z = (x, y), alors −z = (−x,−y) = (−1, 0) · z.

5) z · z′ = z′ · z pour tous z, z′ ∈ C
6) z · (z′ · z′′) = (z · z′) · z′′ pour tout triplet z, z′, z′′ ∈ C
7) z · (z′ + z′′) = z · z′ + z · z′′ pour tous z, z′, z′′ ∈ C,

8) L’élément (1, 0) est appelé élément neutre pour la multiplication, puisque (1, 0)·z = z ·(1, 0) = z
pour tout z ∈ C.

9) Pour tout z ∈ C, z ̸= (0, 0), il existe un unique élément appelé inverse, noté z−1, tel que

z · z−1 = z−1 · z = (1, 0) .

En fait, si z = (x, y) alors

z−1 =
( x

x2 + y2
,

−y
x2 + y2

)
.

Preuve: (Voir exercices.)

⋆ Une fois que l’on a l’addition et la notion d’opposé, on a aussi une soustraction : si z′, z′′ ∈ C,
on définit leur soustraction :

z′ − z′′ := z′ + (−z′′) .

⋆ Une fois que l’on a la multiplication et la notion d’inverse, on a aussi une division : si z, z′ ∈ C
et si z′ ̸= 0, on définit leur division :

z

z′
:= z · z′−1 .

Comme pour les réels, on écrira zz′ au lieu de z · z′. On utilisera aussi la notation

zn := z · · · z︸ ︷︷ ︸
n fois

.

Informel 2.4. Remarquons que l’on n’introduira pas d’ordre total sur C, c’est-à-dire que l’on ne
définira pas, comme on le fait sur R, de symboles tels que “⩽,⩾, <,>”.
En effet, entre (1, 2) et (2, 1), lequel définir comme étant le “plus grand”?

2.2.1 Un sous-ensemble de C identifié avec R

Remarquons que sur le sous-ensemble de C formé des paires dont la deuxième composante est
nulle, (x, 0), on a les propriétés suivantes :

⋆ (x, 0) + (x′, 0) = (x+ x′, 0)

⋆ (x, 0) · (x′, 0) = (xx′, 0)

⋆ Opposé : −(x, 0) = (−x, 0)
⋆ Inverse : Si x ̸= 0, alors (x, 0)−1 = (x−1, 0)
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2.2. Définition

Ces propriétés montrent que les nombres complexes (x, 0) se comportent essentiellement comme
des nombres réels. Ceci mène à faire l’identification suivante, même si elle représente un abus de
notation :

“R = {(x, 0) ∈ C : x ∈ R}′′

Cela signifie que dorénavant, nous ferons comme si R était un sous-ensemble de C. De plus,
lorsqu’aucune ambiguïté n’est possible, on écrira simplement “x” pour un réel, au lieu de “(x, 0)”.
Par exemple, 0 sera considéré comme étant (0, 0). Cette simplification aura l’avantage de faciliter
l’écriture et la lecture d’expressions.

2.2.2 L’équation z2 + 1 = 0 et le nombre i

Définissons le complexe
i := (0, 1) .

On remarque que
(−i)2 = i2 = (0, 1) · (0, 1) = (−1, 0) = −1 ,

et donc que i et −i sont solutions de l’équation

z2 + 1 = 0 .

En d’autres termes, dans C, le polynôme z2+1 peut être factorisé (ce qu’on ne peut pas faire dans
les réels !) :

z2 + 1 = (z − i)(z + i) .

Puisque i est un complexe dont le carré vaut −1, on pourra abuser un peu de la notation suivante :

i ≡
√
−1 .

“Toutes les expressions comme
√
−1,

√
−2, . . . sont des nombres impossibles ou imaginaires, puis-

qu’ils représentent les racines carrées de quantités négatives ; de ces nombres, nous pouvons
seulement affirmer qu’ils ne sont ni zéro, ni supérieurs à zéro, ni inférieurs à lui, ce qui néces-
sairement les rend imaginaires ou impossibles. ”

Leonhard Euler, env 1750

Remarquons que
i1 = i, i2 = −1, i3 = −i , i4 = +1, i5 = i, etc

2.2.3 Partie réelle, partie imaginaire

On peut maintenant écrire, pour tout complexe (x, y) ∈ C,

(x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)y ≡ x+ iy ,

Ainsi, l’expression du produit de (x, y) = x+ iy et (x′, y′) = x′ + iy′ se retrouve facilement :

(x, y) · (x′, y′) = (x+ iy)(x′ + iy′)

= xx′ + xy′i+ x′yi+ yy′ i2︸︷︷︸
=−1

= (xx′ − yy′) + i(xy′ + x′y)

= (xx′ − yy′, xy′ + x′y) .
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Définition 2.5. Si z = (x, y) = x+ iy,

⋆ Re(z) := x est la partie réelle de z.

⋆ Im(z) := y est la partie imaginaire de z.

On a

Re(z + z′) = Re(z) + Re(z′) ,

Im(z + z′) = Im(z) + Im(z′) .

Comme on a dit plus tôt, les nombres sans partie imaginaire (Im(z) = 0) sont identifiés avec les
réels. Aussi, les nombres sans partie réelle (Re(z) = 0) sont les nombres purement imaginaires.
En particulier, i est purement imaginaire.

2.2.4 Conjugué et module

Remarquons que
(x+ iy)(x− iy) = x2 + y2 .

Ceci mène naturellement à introduire deux notions :

Définition 2.6. Si z = x+ iy,

⋆ le complexe z := x− iy est appelé complexe conjugué à z,

⋆ le réel |z| :=
√
x2 + y2 est appelé module de z.

Lemme 9. Le conjugué et le module jouissent des propriétés suivantes :

1) z = z

2) z = z si et seulement si z ∈ R
3) z + z′ = z + z′

4) zz′ = zz′

5) zz = |z|2

6) |z| = |z|

7) ( z
z′
) = z

z′

8) z+z
2

= Re z

9) z−z
2i

= Im z

Preuve:
1) Si z = x+ iy, alors

z = x+ iy = x− iy = x+ iy = z .

2) Si z = x + iy, alors z = z si et seulement x + iy = x − iy, qui signifie y = −y, c’est-à-dire 2y = 0, et
donc y = 0. Ceci signifie bien que z est réel.

3)

z + z′ = (x+ iy) + (x′ + iy′)

= (x+ x′) + i(y + y′)

= (x+ x′)− i(y + y′)

= (x− iy) + (x′ − iy′)

= z + z′

4)

zz′ = (x+ iy)(x′ + iy′)

= (xx′ − yy′) + i(xy′ + x′y)

= (xx′ − yy′)− i(xy′ + x′y)

= (x− iy)(x′ − iy′)

= zz′ .
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5) zz = (x+ iy)(x− iy) = x2 + y2 = |z|2

6) |z| = |x− iy| =
√
x2 + (−y)2 =

√
x2 + y2 = |z|

7)

8) z+z
2 = (x+iy)+(x−iy)

2 = x

9) z−z
2i = (x+iy)−(x−iy)

2i = y

On peut calculer une division z
z′

en divisant et multipliant par le conjugué de z′ :

z

z′
=

x+ iy

x′ + iy′
=

(x+ iy)(x′ − iy′)

(x′ + iy′)(x′ − iy′)
(2.1)

=
xx′ + yy′ + i(yx′ − xy′)

x′2 + y′2
(2.2)

=
xx′ + yy′

x′2 + y′2︸ ︷︷ ︸
=Re( z

z′ )

+i
yx′ − xy′

x′2 + y′2︸ ︷︷ ︸
=Im( z

z′ )

. (2.3)

Cette expression permet aussi de retrouver la formule pour l’inverse :

z−1 =
1

z
=

x

x2 + y2
− i

y

x2 + y2
=
( x

x2 + y2
,

−y
x2 + y2

)
.

2.2.5 Résoudre des équations complexes simples

Remarque 2.7. Soient z = x+ iy, z′ = x′ + iy′. Alors

z = z′ ⇔ x = x′ et y = y′ .

⋄

On utilise cette propriété pour résoudre des équations.
Exemple 2.8. Résolvons l’équation du premier degré en z donnée par

z − 3iz − 3 + 6i = 0 .

Une manière de procéder est d’isoler z, et de faire la division à l’aide du conjugué :

z =
3− 6i

1− 3i
=

21

10
+ i

3

10
.

Sinon, on peut aussi poser z = a+ bi, injecter dans l’équation de départ et réarranger :

0 = (a+ bi)− 3i(a+ bi)− 3 + 6i

= (a+ 3b− 3) + i(b− 3a+ 6) .

Or pour qu’un nombre complexe soit le complexe nul 0 + i0, ses parties réelles et imaginaires
doivent toutes deux être égales à zéro, ce qui implique que a et b sont solutions du système

a+ 3b− 3 = 0

−3a+ b+ 6 = 0 ,

ce qui donne a = 21
10

, b = 3
10

. ⋄
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2.3. Le plan complexe

2.3 Le plan complexe

2.3.1 Identifier C avec le plan cartésien

Il est naturel de représenter un nombre complexe z = (x, y) = x + iy à l’aide d’un point dans le
plan cartésien, dont l’abscisse est x et l’ordonnée y. On remarque alors que le module |z| n’est
autre que la distance qui sépare z de l’origine, et que z est obtenu en réfléchissant z à travers l’axe
Ox :

Les z purement réels se trouvent sur l’axe Ox, que l’on nomme alors l’axe réel, alors que les z
purement imaginaires se trouvent sur l’axe Oy, que l’on nomme alors l’axe imaginaire. On parle
alors du plan complexe.

2.3.2 Représentation polaire : module et argument

Mais il existe d’autres façons de repérer un point dans le plan. Par exemple, on peut associer à
tout z ∈ C sa distance à l’origine, donnée par son module |z| = r, et considérer l’angle orienté θ
formé par z et l’axe réel :

Si z = x+ iy, on a

x = Re(z) = r cos θ

y = Im(z) = r sin θ .

On peut donc écrire z sous forme polaire :

z = r(cos θ + i sin θ) .
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2.3. Le plan complexe

On appelle θ l’argument de z, et on le note θ = Arg(z). Si z = x + iy, et x ̸= 0, son argument θ
satisfait

tan θ =
y

x
.

Bien-sûr, θ étant défini à un multiple entier de 2π près (puisque sinus et cosinus sont 2π-périodiques),
il n’est pas unique. Lorsqu’on considère l’unique argument pour lequel θ ∈] − π, π], on appelle θ
l’argument principal de z (comme celui de l’animation ci-dessus).
Remarque 2.9. Le seul complexe dont on ne définit pas l’argument est z = 0. ⋄
Exemple 2.10. Mettons z = 2 − 2

√
3i sous forme polaire, et calculons son argument principal.

D’abord,
r = |z| =

√
4 + 12 = 4 ,

et donc
z = 4

(
1
2
−

√
3
2
i
)

Comme 1
2
= cos(−π

3
) et −

√
3
2

= sin(−π
3
), l’argument principal de z est θ = −π

3
. Sa forme polaire

peut donc s’écrire
z = 4

(
cos(−π

3
) + i sin(−π

3
)
)

⋄

La représentation polaire des nombres complexes représente des avantages très importants par
rapport à la représentation cartésienne. La principale raison est que l’argument possède quelques
propriétés remarquables, que nous listons dans une proposition. (Comme l’argument n’est pas
défini de manière unique, il faudrait rajouter partout “modulo 2π”.)

Proposition 4. (Propriétés de l’argument)

1) Arg(z) = −Arg(z)

2) Arg(zz′) = Arg(z) + Arg(z′)

3) Arg( z
z′
) = Arg(z)− Arg(z′)

4) Arg(zn) = nArg(z)

Preuve:
1) Suit de l’interprétation géométrique.

2) Si z = r(cos θ + i sin θ) et z′ = r′(cos θ′ + i sin θ′), alors

zz′ = rr′
(
(cos θ cos θ′ − sin θ sin θ′︸ ︷︷ ︸

=cos(θ+θ′)

) + i(cos θ sin θ′ + cos θ′ sin θ)︸ ︷︷ ︸
=sin(θ+θ′)

)

= rr′
(
cos(θ + θ′) + i sin(θ + θ′)

)
On a donc Arg(zz′) = θ + θ′ = Arg(z) + Arg(z′).

3) On calcule
z

z′
=
r

r′
cos θ + i sin θ

cos θ′ + i sin θ′

En multipliant et divisant par le conjugué cos θ′ − i sin θ′, et en simplifiant un peu,

z

z′
=
r

r′

((
cos θ cos θ′ + sin θ sin θ′

)
+ i
(
sin θ cos θ′ − sin θ′ cos θ

))
=
r

r′
(
cos(θ − θ′) + i sin(θ − θ′)

)
,

et donc
Arg(

z

z′
) = θ − θ′ = Arg(z)−Arg(z′)
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4) Si n = 1 il n’y a rien à démontrer puisque

Arg(z1) = 1 ·Arg(z) .

Supposons que la formule a été démontrée pour n, c’est-à-dire supposons que Arg(zn) = nArg(z).
On vérifie que la formule vaut aussi pour n+ 1, en calculant

Arg(zn+1) = Arg(znz)

= Arg(zn) + Arg(z)

= nArg(z) + Arg(z) = (n+ 1)Arg(z) .

Voyons les conséquences de ces propriétés.
D’abord, on apprend quelque chose sur l’interprétation géométrique de la multiplication com-
plexe :

Corollaire 5. Soit ω ∈ C un nombre complexe de module r et d’argument θ. Alors pour tout z ∈ C, le
complexe ωz est obtenu en faisant tourner z autour de l’origine, d’un angle de θ = Arg(ω) (dans le sens
anti-horaire), et en multipliant son module par r.

Preuve: En effet, ωz a pour module |ωz| = |ω||z| = r|z|, et pour argument

Arg(ωz) = Arg(ω) + Arg(z) = Arg(z) + θ .

En particulier, si |ω| = 1, la multiplication de z par ω revient à simplement faire tourner z d’un
angle θ = Arg(ω) (sur cette animation, on a représenté le cercle de rayon 1 en traitillé) :

Si, plutôt que de multiplier z par un complexe ω, on le multiplie par lui-même, un nombre arbi-
traire de fois, on obtient la formule de Moivre (lien web) :

Théorème 2.11. (Formule de Moivre) Si z = r(cos θ + i sin θ), alors pour tout entier n ⩾ 2,

zn = rn
(
cos(nθ) + i sin(nθ)

)
.

Preuve: Par la propriété Arg(zn) = nArg(z), utilisée pour le complexe cos θ + i sin θ :

zn =
(
r(cos θ + i sin θ)

)n
= rn

(
cos θ + i sin θ

)n
= rn(cos(nθ) + i sin(nθ)) .

Sur l’animation ci-dessous, on a représenté un complexe z, ainsi que ses puissances zn, pour n =
1, 2, 3, 4, 5, 6 (déplacer z !) :
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Cette animation permet de voir la formule de Moivre à l’oeuvre, “à l’oeil nu”. En effet,

⋆ l’argument de zn est égal à l’argument de z multiplié par n, et

⋆ le module de zn est égale au module de z élevé à la puissance n. Par conséquent, si |z| < 1
(z est à l’intérieur du cercle de rayon 1, représenté en traitillé), alors les puissances zn sont
plus proches de l’origine, et si |z| > 1 (z est à l’extérieur de ce cercle), alors les puissances zn

sont plus éloignées de l’origine.)

Informel 2.12. Maintenant que l’on a compris l’application “mettre au carré dans le plan com-
plexe”, z 7→ z2, on peut comprendre facilement ce qu’est l’ensemble de Mandelbrot (lien web),
en regardant par exemple la première moitié de cette vidéo : This fractal is more complex than
the Mandelbrot set (Stand-up maths (lien web).

2.4 Exponentielle complexe

Considérons la fonction φ : R → C définie par

φ(θ) := cos θ + i sin θ .

Par la propriété de l’argument,
φ(θ)φ(θ′) = φ(θ + θ′) .

Cette relation n’est pas sans rappeler la propriété de base de la fonction exponentielle (définie sur
R) :

exey = ex+y .

On peut profiter de cette analogie pour introduire une nouvelle fonction sur C :

Définition 2.13. Soit z ∈ C. Alors l’exponentielle complexe est la fonction définie par

exp: C → C
z 7→ exp(z) := eRe(z)(cos(Im(z)) + i sin(Im(z))).

Remarque 2.14. Dans cette définition, la partie “eRe(z)” est l’exponentielle classique (du réel Re(z)),
et “cos” et “sin” sont les fonctions trigonométriques usuelles. En particulier, si Im(z) = 0, c’est-à-
dire si z est un nombre réel, alors exp(z) coïncide avec “l’exponentielle de z” au sens classique du
terme. Pour cette raison, par abus de notation, nous écrirons souvent “ez” au lieu de “exp(z)”. ⋄
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Proposition 5. (Propriétés de z 7→ exp(z))

1) ezez′ = ez+z
′

2) |ez| = eRe(z)

3) Arg(ez) = Im(z)

4) ez+2kπi = ez (périodicité dans la direction imaginaire)

Preuve: 1) suit de la formule pour l’argument : si z = x+ iy, z′ = x′ + iy′, alors en utilisant la fonction φ,

ez+z
′
= e(x+x

′)+i(y+y′)

= ex+x
′(
cos(y + y′) + i sin(y + y′)

)
= ex+x

′
φ(y + y′)

= exex
′
φ(y)φ(y′)

= ezez
′
.

2) Si z = x+ iy, alors |ez| = |exφ(y)| = |ex||φ(y)| = |ex| = ex.

3) et 4) suivent directement de la définition de ez .

Informel 2.15. La définition de ez donnée ci-dessus peut paraître un peu arbitraire. En analyse
complexe, l’exponentielle est en général définie par une série (nous ne traiterons pas des séries
complexes dans ce cours) :

exp(z) :=
∑
n⩾0

zn

n!
.

On peut montrer que cette définition satisfait à toutes les propriétés énoncées ci-dessus, et qu’elle
coïncide avec l’expression que nous avons utilisée pour définir ez.

2.4.1 Exponentielle de nombres purement imaginaires, Formule d’Euler

L’exponentielle d’un nombre purement imaginaire iy n’est autre que φ(y) :

eiy = cos y + i sin y .

Ainsi, la fonction y 7→ eiy jouit des propriétés suivantes :

⋆ |eiy| = 1

⋆ eiy = ei(−y)

⋆ eiyeiy
′
= ei(y+y

′)

⋆ eiy

eiy′
= ei(y−y

′)

⋆ sin y = eiy−e−iy

2i

⋆ cos y = eiy+e−iy

2

Observons eiy pour quelques valeurs particulières de y.

⋆ ei
π
2 = i,

⋆ ei2kπ = 1 ∀k ∈ Z,

⋆ Formule d’Euler : eiπ = −1.
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2.4.2 Représentation polaire/exponentielle

Si un complexe z ∈ C est tel que |z| = r et Arg(z) = θ, on peut maintenant le représenter sous
forme polaire/exponentielle (on dira plus simplement polaire) :

z = reiθ .

La formule de Moivre devient maintenant :

zn =
(
reiθ
)n

= rneinθ = rn
(
cos(nθ) + i sin(nθ)

)
.

La représentation exponentielle des nombres complexes est très utile, par exemple pour calculer
des puissances :
Exemple 2.16. Si z = 2− 2

√
3i, calculons z999.

Calculer cette puissance en multipliant z par lui-même 998 fois, à l’aide de la définition du produit
complexe uniquement, n’est probablement pas une bonne idée. Utilisons plutôt la forme polaire
de z, déjà calculée plus haut :

z = 4ei(−
π
3
) .

Par la formule de Moivre,

z999 = 4999ei(−999π
3
) = 4999ei(−333π) = 4999ei(−166·2π−π) (2.4)

= 4999 ei(−166·2π)︸ ︷︷ ︸
=1

ei(−π)︸ ︷︷ ︸
=−1

(2.5)

= −4999 . (2.6)

⋄
Exemple 2.17. (1− i

1 + i

)4
=
(√2ei(−

π
4
)

√
2ei

π
4

)4
=
(
ei(−

π
2
)
)4

= ei(−2π) = 1 .

⋄

Finalement, la notation polaire/exponentielle est utile pour résoudre des équations en une va-
riable complexe z. Pour cela, on aura souvent besoin de se souvenir que si z, z′ sont deux nombres
complexes écrits sous forme polaire, z = reiθ et z′ = r′eiθ

′ , alors

z = z′ ⇔ r = r′ et θ = θ′ + 2kπ

pour un entier k qui peut être quelconque.
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Exemple 2.18. Considérons l’équation complexe(z
z

)2
= z .

On se rend vite compte, en essayant de poser z = a + ib, que l’approche cartésienne n’est pas la
bonne . Écrivons plutôt z = reiθ. Puisque r > 0 (sinon l’équation n’est pas définie), l’équation
devient ( reiθ

re−iθ

)2
= reiθ ,

qui est
ei4θ = reiθ .

On a donc (voir la remarque ci-dessus) r = 1, et

4θ = θ + 2kπ ,

ce qui donne θ = k 2π
3

, et donc les solutions sont de la forme z = eik
2π
3 . On obtient exactement trois

solutions distinctes en prenant k = 0, 1, 2. ⋄

Dans la section suivante, nous verrons l’utilité de la notation polaire/exponentielle pour trouver
les racines d’un nombre complexe.

2.5 Racines de nombres complexes

Un autre avantage de travailler avec la forme polaire/exponentielle est qu’elle fournit une ap-
proche rigoureuse dans la recherche des racines d’un nombre complexe.

Définition 2.19. Soit ω ∈ C et n ∈ N un entier. Un complexe z ∈ C qui satisfait

zn = ω

est appelée racine n-ème de ω.

Remarquons que ω = 0 ne possède qu’une seule racine, car zn = 0 n’a qu’une seule solution :
z = 0. Mais un complexe ω ̸= 0 possède exactement n racines n-èmes :

Théorème 2.20. Soit ω = seiφ, s > 0. Si n ∈ N∗, alors les racines n-èmes de ω sont données par{
zk =

n
√
s · ei

φ+2kπ
n : k = 0, 1, 2, . . . , n− 1

}
Preuve: En écrivant z = reiθ, par de Moivre, zn = rneinθ. Donc, zn = ω si et seulement si rneinθ = seiφ, ce

qui entraîne
rn = s , nθ = φ+ 2kπ ,

où k est arbitraire, ce qui donne

r = n
√
s , θ =

φ+ 2kπ

n
.

Remarquons que les entiers k qui donnent des solutions distinctes sont k = 0, 1, 2, . . . , n− 1.

Par l’expression ci-dessus, on voit que les racines n-èmes de ω sont réparties sur un cercle de
rayon n

√
s, aux sommets d’un polygone régulier. Voyons quelques exemples.
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Exemple 2.21. Calculons les racines 2-èmes (appelées aussi racines carrées) de −1+ i, qui sont les
z tels que

z2 = −1 + i

On utilise le théorème du dessus. Comme ici ω = −1 + i =
√
2 · ei 3π4 , les racines sont

zk =
4
√
2 · ei

3π
4 +2kπ

2 =
4
√
2 · ei(

3π
8
+kπ) , k = 0, 1 ,

c’est-à-dire
z0 =

4
√
2 · ei

3π
8 , z1 =

4
√
2 · ei

11π
8 .

Les racines z0 et z1 sont sur un cercle de rayon 4
√
2, et leur carré est bien égal à ω = −1 + i (sur

l’animation ci-dessous, déplacer z de façon à ce que z2 = −1 + i) : ⋄

Informel 2.22. Si z2 = −1 + i, on pourrait être tenté d’écrire z = ±
√
−1 + i, mais on n’a pas de

fonction “racine carrée” dans C ! On évitera donc d’utiliser le symbole “
√
· · ·” pour les nombres

complexes, la fonction z 7→
√
z étant une fonction compliquée de définir rigoureusement sur tout

C.

Exemple 2.23. Calculons les racines cubiques de i :

z3 = i .

Comme i = 1 · eiπ2 , les racines sont

zk =
3
√
1 · ei

π
2 +2kπ

3 = ei(
π
6
+ 2kπ

3
) , k = 0, 1, 2 ,

c’est-à-dire

z0 = ei
π
6 , z1 = ei

5π
6 , z2 = ei

3π
2 .

Ces racines sont sur le cercle trigonométrique, aux sommets d’un triangle équilatéral, rendu vi-
sible sur cette animation :
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⋄
Exemple 2.24. Calculons les racines sixièmes de l’unité, c’est-à-dire les solutions de

z6 = 1 .

Sous forme polaire, 1 = 1ei0, et donc ses racines sixièmes sont

zk =
6
√
1 · ei

0+2kπ
6 = ei

kπ
3 , k = 0, 1, 2, 3, 4, 5 .

⋄

2.6 Le Théorème Fondamental de l’Algèbre

Soit P (z) un polynôme complexe en z :

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n ,

où les coefficients ak ∈ C. On dit que P est de degré n si an ̸= 0.

Si z∗ ∈ C est tel que
P (z∗) = 0 ,

z∗ est appelé racine du polynôme.

On sait que dans les réels, certains polynômes (comme par exemple x2 + 1) ne possèdent pas de
racines réelles. Dans les complexes, c’est très différent :

Théorème 2.25. (Théorème Fondamental de l’Algèbre) Dans C, tout polynôme P de degré n ⩾ 1 possède
au moins une racine.

Nous ne donnerons pas la preuve complète de ce théorème, mais nous esquisserons un argument
géométrique qui contient l’idée centrale de l’argument, sur un exemple. L’adaptation au cas géné-
ral ne présente pas de difficulté supplémentaire (même si des notions un peu plus avancées sont
nécessaires pour l’exprimer rigoureusement).

2.6.1 Idée de la preuve, sur un exemple

Considérons le polynôme suivant, de degré 5,

P (z) = (2 + i) + iz + z5 .
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Ce polynôme contient un terme constant non-nul, 2 + i ̸= 0, et il ne possède pas de racine fa-
cilement “devinable”. Pourtant, le Théorème Fondamental dit qu’il doit posséder au moins une
racine. Voyons comment on peut, par un argument géométrique, se convaincre que c’est effecti-
vement le cas.

Cherchons une racine z écrite en forme polaire,

z = reiθ .

Nous allons balayer C avec z, en passant des petites aux grandes valeurs du rayon r ⩾ 0 ; pour
chaque valeur fixée de r, on considère tous les arguments possibles θ ∈ [0, 2π]. Nous allons donc
“tester” tous les points z ∈ C, en voyant C comme constitué d’une infinité de cercles centrés à
l’origine.

Pour commencer, remarquons que si r = 0, alors z = 0, et l’image de ce point par P est égale au
terme constant :

P (0) = 2 + i ̸= 0 .

Donc z = 0 n’est pas racine de ce polynôme, et on commence à augmenter le rayon.

Pour un r > 0 fixé, considérons le cercle Cr ⊂ C de rayon r centré à l’origine (en rouge sur
l’animation ci-dessous).

L’image de Cr par P ,

P (Cr) := {P (z) : z ∈ Cr} ,

est une courbe fermée dans C que nous appellerons lacet (en bleu sur l’animation ci-dessous).

Si le lacet P (Cr) touche l’origine, c’est qu’il existe un z ∈ Cr tel que P (z) = 0.

Remarquons ensuite que

⋆ Si r est petit, P (Cr) est un petit lacet qui entoure P (0) = 2 + i.

⋆ Si r est grand, alors P (Cr) est un grand lacet qui entoure 5 fois l’origine.

En augmentant r progressivement, il doit donc exister au moins une valeur r∗ > 0 pour laquelle
P (Cr∗) touche l’origine. Donc pour cette valeur r∗, il existe un z∗ ∈ Cr∗ tel que P (z∗) = 0.

P (z) = (2 + i) + iz + z5 .
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On comprend que la preuve du résultat général (pour un polynôme P quelconque) peut se faire
en adaptant l’idée présentée ci-dessus. Le même argument est présenté dans The Fundamental
Theorem of Algebra (Numberphile) (lien web).

2.6.2 Conséquences

Lemme 10. Soit P (z) un polynôme de degré n ⩾ 1, et soit z0 ∈ C un complexe fixé. Alors il existe un
unique polynôme Q(z), de degré n− 1, tel que

P (z) = (z − z0)Q(z) + P (z0) ∀z ∈ C .

Preuve: Supposons que P est de la forme

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n .

Considérons les nombres b0, b1, . . . , bn−1 définis inductivement par

bn−1 := an

bn−2 := z0bn−1 + an−1

...
b1 := z0b2 + a2

b0 := z0b1 + a1 ,

et définissons

Q(z) := b0 + b1z + b2z
2 + · · ·+ bn−1z

n−1 .
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Remarquons que si on développe le produit (z− z0)Q(z) et qu’on regroupe les puissances de z, on obtient :

(z − z0)Q(z) =− z0b0

+ (b0 − z0b1)︸ ︷︷ ︸
=a1

z

+ (b1 − z0b2)︸ ︷︷ ︸
=a2

z2

+ · · ·
+ (bn−2 − z0bn−1)︸ ︷︷ ︸

=an−1

zn−1

+ bn−1︸︷︷︸
=an

zn

= −z0b0 + (P (z)− a0) ,

c’est-à-dire
(z − z0)Q(z) + z0b0 + a0 = P (z) .

En évaluant cette identité en z = z0, on obtient z0b0 + a0 = P (z0), et donc

(z − z0)Q(z) + P (z0) = P (z) .

Ce résultat implique que si z0 est une racine de P , alors P peut se factoriser en un produit :

P (z) = (z − z0)Q(z) ,

où Q est la division de P par z− z0 ; on peut obtenir Q par division Euclidienne, ou alors à l’aide
de la formule de récurrence pour ses coefficients, vue dans la preuve du lemme (on appel cette
relation un Schéma de Hörner).

On peut maintenant énoncer une version un peu plus forte du Théorème Fondamental :

Théorème 2.26. Dans C, tout polynôme P de degré n ⩾ 1 possède n racines : il existe z1, . . . , zn ∈ C tels
que

P (zk) = 0 ∀k = 1, 2, . . . , n .

De plus, P peut se factoriser comme suit :

P (z) = an(z − z1) · · · (z − zn) .

Preuve: Soit P un polynôme de degré n. Alors le Théorème Fondamental et le lemme du dessus garan-
tissent qu’il existe z1 ∈ C et un polynômeQ(z), de degré n−1, tel que P (z) = (z−z1)Q(z). On peut ensuite
répéter l’argument avecQ : il existe z2 ∈ C et un polynômeQ′(z), de degré n−2, tel queQ(z) = (z−z2)Q′(z),
etc. Le procédé se termine lorsque P s’est exprimé comme un produit

P (z) = C(z − z1)(z − z2) · · · (z − zn) ,

où C ∈ C est une constante. Puisque le terme de plus haut degré associé à ce produit est Czn, on en déduit
que C = an.

Si le Théorème Fondamental et le lemme du dessus nous ont montré que tout polynôme de degré
n peut se factoriser en produit de n facteurs, trouver ces facteurs n’est pas un exercice simple en
général. Nous verrons quelques exemples dans la section suivante.
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2.7 Polynômes et factorisation

Le Théorème Fondamental garantit qu’un polynôme complexe quelconque de degré n,

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n , an ̸= 0 ,

possède n racines complexes z1, z2, . . . , zn, et peut se factoriser en

P (z) = an(z − z1) · · · (z − zn) .

Passer de la première forme à la seconde est ce qu’on appelle la factorisation de P .

La factorisation est donc directement reliée à la connaissance des racines de P . Voyons quelques
exemples.
Exemple 2.27. Factorisons le polynôme

P (z) = z2 + 2z + 2 , (a2 = 1 ̸= 0) ,

en commençant par chercher ses racines. L’équation P (z) = 0 ne possède pas de solutions réelles
puisque ∆ = 4 − 8 = −4 < 0. Mais étant de degré 2, P (z) doit posséder deux racines complexes
(garanti par le Théorème Fondamental de l’Algèbre). Voyons deux façons de les trouver.

1) On pose z = a + bi (où a et b sont réels !), que l’on injecte dans l’équation z2 + 2z + 2 = 0,
pour trouver

(a2 − b2 + 2a+ 2︸ ︷︷ ︸
=0

) + i(2ab+ 2b︸ ︷︷ ︸
=0

) = 0 .

On a donc un petit système

a2 − b2 + 2a+ 2 = 0

2b(a+ 1) = 0 .

Considérons la deuxième condition : 2b(a+ 1) = 0.

⋆ Cas 1) : b = 0. Signifie que z est réel, or on a déjà dit qu’il n’y a pas de solution réelle.

⋆ Cas 2) : a = −1. Inséré dans la première condition, on obtient b = ±
√
1 = ±1.

On en déduit l’existence de deux racines, z1 = −1− i et z2 = −1 + i.

2) On utilise la formule classique

z =
−b±

√
b2 − 4ac

2a
=

−2±
√
−4

2

=
−2± 2

√
−1

2
= −1±

√
−1

= −1± i .

On a donc la factorisation de P :

P (z) = (z − (−1− i))(z − (−1 + i)) .

⋄
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Remarque 2.28. Dans le cas général d’une équation du deuxième degré de la forme

az2 + bz + c = 0 ,

où a, b, c ∈ C et a ̸= 0, on peut procéder comme dans le cas réel, en commençant par remarquer
que l’équation est équivalente à (

z +
b

2a

)2

=
b2 − 4ac

4a2
=: ω .

Lorsque ω ̸= 0, on peut alors chercher ses deux racines (au sens de la section sur les racines de
complexes (lien vers la section m_complexes_racines)), disons y0 ∈ C et y1 ∈ C, et conclure
que les deux racines du polynôme sont

zk = − b

2a
+ yk , k = 0, 1

Donc la formule −b±
√
b2−4ac
2a

, habituellement utilisée pour des polynômes de degré 2 à coefficients
réels, peut aussi s’utiliser lorsque les coefficients sont complexes, sauf que dans ce cas, toutes les
grandeurs apparaissant sont complexes, et le terme “±

√
b2 − 4ac” doit se comprendre comme

étant la recherche des deux racines carrées du complexe b2 − 4ac. ⋄

La factorisation complète d’un polynôme peut être laborieuse, surtout si celui-ci est de degré
élevé. Nous verrons quelques exemples en fin de section.

Par contre, la factorisation d’un polynôme de la forme P (z) = zn − ω s’obtient directement, à
partir des racines n-èmes de ω.
Exemple 2.29. Par un des exemples traités dans la section précédente, la factorisation de P (z) =
z3 − i est donnée par

P (z) = (z − ei
π
6 )(z − ei

5π
6 )(z − ei

3π
2 ) .

⋄

2.7.1 Racines multiples

Ce que le théorème fondamental ne dit pas, c’est si les racines sont distinctes ; or elles ne le sont
pas toujours.

Définition 2.30. Si n∗ est le plus grand entier tel que (z − z∗)
n∗ divise P , on dit que z∗ est une

racine de P de multiplicité n∗.

Exemple 2.31. Le polynôme
P (z) = z2 − 2iz − 1 = (z − i)2

possède deux racines confondues : z1 = z2 = i. Donc i est une racine de multiplicité 2. ⋄

En tenant compte des éventuelles multiplicités, la factorisation d’un polynôme de degré n est
donc de la forme

P (z) = an(z − zi1)
n1(z − zi2)

n2 · · · (z − zik)
nk ,

où maintenant les racines zi1 , . . . , zik sont toutes distinctes, et où les entiers n1, . . . , nk satisfont à
la condition : n1 + n2 + · · ·+ nk = n.
Exemple 2.32. Le polynôme P (z) = z3 − (4− 3i)z2 + (4− 12i)z + 12i peut se factoriser ainsi :

P (z) = (z + 3i)(z − 2)2 .

Ainsi, la racine z1 = −3i est de multiplicité n1 = 1, et z2 = 2 est de multiplicité 2. ⋄
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2.7.2 Racines d’un polynôme à coefficients réels

Proposition 6. Soit P (z) un polynôme dont les coefficients sont tous réels (ak ∈ R). Si z∗ est une racine
de P ,

P (z∗) = 0 ,

alors z∗ est aussi racine de P :
P (z∗) = 0 .

Preuve: Soit P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n. Supposons que P (z∗) = 0. Alors

P (z∗) = a0 + a1z∗ + a2z∗
2 + · · ·+ anz∗

n

= a0 + a1z∗ + a2z2∗ + · · ·+ anzn∗

= a0 + a1z∗ + a2z2∗ + · · ·+ anzn∗

= P (z∗)

= 0

= 0 ,

donc z∗ est aussi racine de P .

Une conséquence intéressante est que si un polynôme a tous ses coefficients réels, alors à chaque racine
z∗ correspond une racine conjuguée : z∗.
Exemple 2.33. On a vu plus haut que le polynôme P (z) = z2 + 2z + 2, dont tous les coefficients
sont réels (a0 = a1 = 2, a2 = 1), possède deux racines : z1 = −1− i et z2 = −1 + i. Et effectivement,
celles-ci sont conjuguées l’une par rapport à l’autre :

z2 = z1 .

⋄

Ce résultat a deux conséquences très utiles. La première :

Corollaire 6. Si P est de degré impair et que tous ses coefficients sont réels, alors il possède au moins une
racine réelle.

Preuve: En effet, si P est de degré impair, alors par le théorème fondamental de l’algèbre l’ensemble de ses
racines,

R := {z ∈ C : P (z) = 0} ,

contient un nombre impair d’éléments (même si certaines racines sont confondues). Par la proposition ci-
dessus, si z ∈ R est une racine telle que Im(z) ̸= 0, alors R contient aussi z ̸= z. On peut donc retirer de R
toutes les paires de racines distinctes conjuguées de ce type.
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Puisque R contient au départ un nombre impair d’éléments, on conclut qu’après avoir retiré toutes ces
paires, il doit rester au moins une racine dont la partie imaginaire est nulle ; cette racine est donc réelle.

Remarque 2.34. Plus tard, on démontrera ce corollaire d’une autre manière, à l’aide du théorème
de la valeur intermédiaire. ⋄
Exemple 2.35. Le polynôme

P (z) = z7 − πz6 +
√
2z − 1

est de degré impair, et tous ses coefficients sont réels. Par le corollaire, il possède au moins une
racine réelle. ⋄

2.7.3 Factorisation de polynômes à coefficients réels

La deuxième conséquence est sur la structure de la factorisation des polynômes réels :

Corollaire 7. Tout polynôme à coefficients réels P (x) peut se factoriser en un produit de polynômes irré-
ductibles de degré 1 ou 2, à coefficients réels eux aussi.

Preuve: Avec les mêmes coefficients réels, laissons la variable devenir complexe : P (z). Par la proposition,
si z∗ est racine de P , alors z∗ l’est aussi. Donc la factorisation de P sera de la forme

P (z) = · · · (z − z∗) · · · (z − z∗) · · ·

Or si on met ces deux termes ensemble, on obtient

(z − z∗)(z − z∗) = z2 − (z∗ + z∗)z + z∗z∗

= z2 − (2Re(z∗))︸ ︷︷ ︸
∈R!

z + |z∗|2︸︷︷︸
∈R!

,

qui est bien un polynôme de degré 2 à coefficients réels. Ceci prouve l’affirmation.

Exemple 2.36. Utilisons cette méthode pour donner une factorisation du polynôme réel

P (x) = x4 + 1

(dont tous les coefficients sont réels) par des polynômes de degré 2 réels. On commence par cher-
cher ses racines complexes, qui sont solutions de P (z) = z4 + 1 = 0. Ces racines satisfont donc
z4 = −1 ; ce sont les racines 4-èmes de ω = −1. On trouve les racines 4-èmes de −1, par la méthode
de la section précédente. On commence par écrire

ω = −1 = 1 · eiπ ,

qui donne, par le théorème,

z =
4
√
1 · ei

π+2kπ
4 , k = 0, 1, 2, 3.

On trouve donc

k = 0 : z0 = ei
π
4 = +

√
2
2
+ i

√
2
2

k = 1 : z1 = ei
3π
4 = −

√
2
2
+ i

√
2
2

k = 2 : z2 = ei
5π
4 = −

√
2
2
− i

√
2
2

k = 3 : z3 = ei
7π
4 = +

√
2
2
− i

√
2
2
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2.7. Polynômes et factorisation

La factorisation de P en facteurs irréductibles complexes est donc

P (z) = 1︸︷︷︸
a4=1

(z − z0)(z − z1)(z − z2)(z − z3) .

On remarque que
z3 = z0, z2 = z1 .

Les paires conjuguées de racines de P (z) = z4 + 1 sont donc (z0, z3) et (z1, z2).

En regroupant ces termes dans la factorisation, on obtient des polynômes de degré 2 à coefficients
réels :

(z − z0)(z − z3) = (z − z0)(z − z0)

= z2 − 2Re z0z + |z0|2

= z2 −
√
2z + 1 ,

(z − z1)(z − z2) = (z − z1)(z − z1)

= z2 − 2Re z1z + |z1|2

= z2 +
√
2z + 1 .

On obtient ainsi la factorisation de P en facteurs irréductibles réels :

P (z) =
(
z2 −

√
2z + 1

)(
z2 +

√
2z + 1

)
.

⋄

Informel 2.37. Avec quelques bonnes idées, on peut parfois éviter de passer par tout ce forma-
lisme. Par exemple,

z4 + 1 = (z4+2z2 + 1)−2z2

= (z2 + 1)2 − 2z2

= (z2 + 1)2 − (
√
2z)2

= (z2 + 1−
√
2z)(z2 + 1 +

√
2z)

= (z2 −
√
2z + 1)(z2 +

√
2z + 1) .

Plus tard, on utilisera cette factorisation pour calculer l’intégrale indéfinie∫
dx

x4 + 1
=

∫
dx(

x2 −
√
2x+ 1

)(
x2 +

√
2x+ 1

) .
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2.7. Polynômes et factorisation

2.7.4 Factorisation dans le cas général

Dans le cas général, pour factoriser un polynôme complexe P (z), on pourra

⋆ essayer de trouver une première racine z1 par tâtonnement,

⋆ effectuer une division euclidienne de P (z) par (z − z1), et donc obtenir P (z) = (z − z1)Q(z),

⋆ recommencer avec Q(z), etc.

Exemple 2.38. Factorisons

P (z) = z3 − (2− 3i)z2 − (1 + 5i)z + 2 + 2i .

Pour commencer, en testant avec quelques nombres simples, on remarque que P (1) = 0 . Mainte-
nant qu’on a cette racine, on sait que P peut se factoriser :

P (z) = (z − 1)Q(z) .

On trouve Q(z) en effectuant la division euclidienne de P (z) par (z − 1) :

On a donc
Q(z) = z2 − (1− 3i)z − (2 + 2i) ,

qu’on factorise à son tour. En remarquant que Q(−2i) = 0, on fait la division

qui donne Q(z) = (z + 2i)(z − (1− i)). On a donc factorisé P :

P (z) = (z − 1)(z + 2i)(z − (1− i)) .

⋄
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