Chapitre 2
Nombres : C

2.1 Introduction

Les nombres complexes sont apparus de maniere “accidentelle”, en 1545, lorsqe Cardan généra-
lisa une méthode (inventée par Tartaglia) pour résoudre des équations du troisieme degré de la
forme

2 +pr+q=0,
en la variable réelle . Sa méthode était innovante du fait qu’elle passait par un calcul qui mani-

pulait “4/—1” comme si ¢’était une quantité réelle.

Une vidéo qui présente I'histoire de cette méthode : How imaginary numbers were invented
(Veritasium) (lien web)

Ce n’est que plus tard que les complexes furent introduits et étudiés de maniere systématique,
par Gauss en particulier.

Apres les avoir introduit de maniére axiomatique, nous présenterons quelques notions élémen-
taires au sujet des nombres complexes, en particulier leur représentation dans le plan complexe,
et la formule de Moivre. Nous utiliserons aussi quelques-unes de leurs propriétés dans la factorisa-
tion de polyndmes, qui sera utilisée tout a la fin du cours dans le calcul de certaines primitives de
fonctions réelles.

2.2 Définition

Comme R, 'ensemble des nombres complexes, noté C, est un corps, c’est-a-dire un ensemble
muni des opérations +, —, -, +, satisfaisant aux propriétés usuelles.

Ce qui rend ce corps particulier est qu'il est formé de paires de réels, pour lesquelles la définition
d’un produit “-” n’est pas forcément naturelle :

Définition 2.1. On note C I'ensemble des paires de réels, z = (z,y), muni des deux opérations
suivantes. Si z = (z,y) et 2/ = (2/,¢/),
* leur addition est définie
z+2 =@+ y+y),

% et leur multiplication par
z-2 = (zd — gy, zy + 2'y).

Exemple 2.2. (1,2) - (—3,4) = (—11, -2).
)

Exemple 2.3. (a,0) - (z,y) = (ax — 0-y,ay + 0 - z) = (az, ay).
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Lemme 8. (Propriétés des opérations + et -)
1) z+ 2 = 2' + z pour toute paire z, 2" € C
2) z+ (#+2") = (2 +2') + 2" pour tous z, 7', 2" € C

3) L'élément (0,0) est appelé élément neutre pour I’addition, puisque z + (0,0) = (0,0) + z = 2
pour tout z € C.

4) Pour tout z € Cil existe un unique élément noté —z € C et appelé opposé de z, tel que z+(—z) = 0.
En fait, si z = (x,y), alors —z = (—xz, —y) = (—1,0) - z.

5) z-2 =2 zpourtous z,2 € C
6) z- (2 -2") = (2-2')- 2" pour tout triplet z,2', 2" € C
7) z-(Z+2")=2z-2"+ 2z 2" pourtous 2,2/, 2" € C,

8) L'élément (1,0) est appelé élément neutre pour la multiplication, puisque (1,0)-z = z-(1,0) = z
pour tout z € C.

9) Pour tout z € C, z # (0,0), il existe un unique élément appelé inverse, noté 271 tel que
z-27t =21 2=(1,0).

En fait, si z = (x,y) alors

o= ()
72 I y2’ 12 JL y2 :
Preuve: (Voir exercices.) O]

* Une fois que 1’on a I'addition et la notion d’opposé, on a aussi une soustraction :si z’, 2" € C,
on définit leur soustraction :
Z/ _ Z// - Z/ + (_Z//) )

* Une fois que 1’on a la multiplication et la notion d’inverse, on a aussi une division :si z, 2’ € C
et si 2/ # 0, on définit leur division :

n fois

Informel 2.4. Remarquons que I'on n’introduira pas d’ordre total sur C, c’est-a-dire que 1'on ne
définira pas, comme on le fait sur R, de symboles tels que “<, >, <, >".
En effet, entre (1,2) et (2, 1), lequel définir comme étant le “plus grand” ?

2.2.1 Un sous-ensemble de C identifié avec R

Remarquons que sur le sous-ensemble de C formé des paires dont la deuxieme composante est
nulle, (z,0), on a les propriétés suivantes :

* (x,0) + (2/,0) = (z + 2/,0)
* (x,0) - (2/,0) = (xa',0)
* Opposé : —(z,0) = (—=x,0)

x Inverse : Six # 0, alors (z,0)~! = (271,0)
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Ces propriétés montrent que les nombres complexes (z,0) se comportent essentiellement comme
des nombres réels. Ceci méne a faire l'identification suivante, méme si elle représente un abus de
notation :

“R={(z,0)€C : zeR}

Cela signifie que dorénavant, nous ferons comme si R était un sous-ensemble de C. De plus,

“_7

lorsqu’aucune ambiguité n’est possible, on écrira simplement “z” pour un réel, au lieu de “(z, 0)”.
Par exemple, 0 sera considéré comme étant (0, 0). Cette simplification aura I'avantage de faciliter
'écriture et la lecture d’expressions.

2.2.2 L’équation z? + 1 = 0 et le nombre i

Définissons le complexe
i:=(0,1).

On remarque que
(_|>2 =i = (07 1) ’ (O’ 1) = (_]—70) =-1,

et donc que i et —i sont solutions de I’équation
Z4+1=0.

En d’autres termes, dans C, le polyndme 22 + 1 peut étre factorisé (ce qu’on ne peut pas faire dans
les réels!) :
Z2H+1l=(z-i)(z+i).

Puisque i est un complexe dont le carré vaut —1, on pourra abuser un peu de la notation suivante :

i=v—1.

“Toutes les expressions comme y/—1, /=2, ... sont des nombres impossibles ou imaginaires, puis-
qu’ils représentent les racines carrées de quantités négatives; de ces nombres, nous pouvons
seulement affirmer qu’ils ne sont ni zéro, ni supérieurs a zéro, ni inférieurs a lui, ce qui néces-
sairement les rend imaginaires ou impossibles. ”

Leonhard Euler, env 1750

Remarquons que

2.2.3 Partie réelle, partie imaginaire

On peut maintenant écrire, pour tout complexe (z,y) € C,

(z,y) = (2,0) + (0,y) = (,0) + (0, )y = = + iy,
Ainsi, I'expression du produit de (z,y) = z + iy et (2, y') = 2’ + iy’ se retrouve facilement :

(z,y) - («,y) = (x +iy)(a" +iy')
= za’ + ayi + 2yi +yy' P2
=—1
= (z2’ —yy') +i(zy + 2'y)
= (zz' —yy zy +2'y).
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Définition 2.5. Si z = (z,y) = x + iy,
* Re(z) := z est la partie réelle de z.

* Im(2) := y est la partie imaginaire de 2.

Ona
Re(z + 2') = Re(z) + Re(?'),
Im(z + 2') = Im(z) + Im(2") ..

Comme on a dit plus tot, les nombres sans partie imaginaire (Im(z) = 0) sont identifiés avec les
réels. Aussi, les nombres sans partie réelle (Re(z) = 0) sont les nombres purement imaginaires.
En particulier, i est purement imaginaire.

2.2.4 Conjugué et module

Remarquons que
(z +iy)(z —iy) = 2® + y°.
Ceci mene naturellement a introduire deux notions :
Définition 2.6. Si z = x + iy,
* le complexe 7 := z — iy est appelé complexe conjugué a z,
* le réel |z| := /22 + y2 est appelé module de .

Lemme 9. Le conjugué et le module jouissent des propriétés suivantes :

1) z==z 6) [z] = |7|
2) isiet sebﬁementsizeR 7) (5)=2
3) z24+2=Z+7 .

8 =77 8 5% =Rez
5) 2z = |z|? 9) & =Imz

Preuve:
1) Siz =z + iy, alors

Z=r+iy=z—iy=x+iy==z.

2) Siz = x + iy, alors z = Z si et seulement x + iy = x — iy, qui signifie y = —y, c’est-a-dire 2y = 0, et
donc y = 0. Ceci signifie bien que z est réel.
3)

242 = (v +iy) + (' +iy)
=@ +2)+ily+v)
= (z+2) —ily+v)

(z —iy) + (2 —iy/)
=z4 2
4)

= (z +iy)(a’ +iy)

= (v’ —yy') +i(zy +2'y)
= (z2' —yy') —i(zy +2'y)
— (e —iy)@ —iy)

=z2.
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5) 2z = (x +iy)(z —iy) = 2® + y* = |2]?

6) [zl = |z — iyl = V2% + ()2 = Va2 +y* = |2|
7)

8) = = w

=z
9) z2—J _ (w+iy);(w*iy) =y
O
On peut calculer une division % en divisant et multipliant par le conjugué de 2’ :
z xtiy  (x+iy)(@ —iy) @.1)
s+ iy - (:U/ i iy’)(:c/ _ iy’) )
v’ +yy +i(yx’ — xy)
= R (2.2)
rz + / . ' —
- 2 + zg ZZJZ + y;z ’ (23)
“Re(7)  —Im(3)
Cette expression permet aussi de retrouver la formule pour l'inverse :
271 g 1 g t — | y g ( r _y )
z o wt+y? a4y N4y a?4y?)
2.2.5 Résoudre des équations complexes simples
Remarque 2.7. Soient z = x + iy, 2/ = 2’ + iy’. Alors
z=2 & r=12ety=19".
o

On utilise cette propriété pour résoudre des équations.
Exemple 2.8. Résolvons I'équation du premier degré en »z donnée par

z—3iz—=3+61=0.
Une maniere de procéder est disoler z, et de faire la division a I'aide du conjugué :

_8-6i_21 .8
T123 10 o

Sinon, on peut aussi poser z = a + bi, injecter dans 1"équation de départ et réarranger :

0 = (a+ bi) — 3i(a + bi) — 3 + 6i
=(a+3b—-3)+i(b—3a+6).

Or pour qu'un nombre complexe soit le complexe nul 0 + i0, ses parties réelles et imaginaires
doivent toutes deux étre égales a zéro, ce qui implique que a et b sont solutions du systeme

a+3b—3=0
—3a+b+6=0,

ce quidonnea =%, b = 2. o
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2.3 Le plan complexe

2.3.1 Identifier C avec le plan cartésien

Il est naturel de représenter un nombre complexe z = (z,y) = = + iy a 'aide d'un point dans le
plan cartésien, dont l’abscisse est = et 'ordonnée y. On remarque alors que le module |z| n’est
autre que la distance qui sépare z de I'origine, et que Z est obtenu en réfléchissant = a travers 1’axe
Ox :

|z| = 1.879... z

.Z——‘

LJ

Les z purement réels se trouvent sur I'axe Oz, que I’on nomme alors 1'axe réel, alors que les z
purement imaginaires se trouvent sur 1’axe Oy, que 'on nomme alors I’axe imaginaire. On parle
alors du plan complexe.

2.3.2 Représentation polaire : module et argument

Mais il existe d’autres fagons de repérer un point dans le plan. Par exemple, on peut associer a
tout z € C sa distance a l'origine, donnée par son module |z| = r, et considérer I'angle orienté ¢
formé par z et I'axe réel :

r=1.221...
6 =0.960... r

Siz=z+iy,ona

x = Re(z) = rcosf

y =1Im(z) =rsinf.

On peut donc écrire z sous forme polaire :

z=r(cosf +isinf).
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On appelle 6 I'argument de z, et on le note § = Arg(z). Si z = = + iy, et © # 0, son argument ¢
satisfait
tang = 2 |
x

Bien-stir, § étant défini a un multiple entier de 27 pres (puisque sinus et cosinus sont 27-périodiques),
il n’est pas unique. Lorsqu’on considere I'unique argument pour lequel 6 €] — 7, 7], on appelle ¢
I’argument principal de z (comme celui de I’animation ci-dessus).

Remarque 2.9. Le seul complexe dont on ne définit pas I’argument est z = 0. o
Exemple 2.10. Mettons z = 2 — 2+/3i sous forme polaire, et calculons son argument principal.
D’abord,
r=|zl=V4+12=4,
et donc
s 4(- 4
Comme 5 = cos(—5) et —\/7?; = sin(—%), I'argument principal de z est § = —Z. Sa forme polaire

peut donc s’écrire
z =4(cos(—%) +isin(—3))

O

La représentation polaire des nombres complexes représente des avantages trés importants par
rapport a la représentation cartésienne. La principale raison est que I'argument posséde quelques
propriétés remarquables, que nous listons dans une proposition. (Comme 1’argument n’est pas
défini de maniere unique, il faudrait rajouter partout “modulo 27”.)

Proposition 4. (Propriétés de I'arqument)
1) Arg(z) = — Arg(2)
2) Arg(z2') = Arg(z) + Arg(2')
3) Arg(Z) = Arg(z) — Arg()
(

4) Arg(z") = nArg(z)

Preuve:
1) Suit de l'interprétation géométrique.
2) Siz=r(cosf +isinf) etz =r'(cos® +isinf’), alors
22" =rr'((cosfcos§ —sinfsinf’) + i(cosfsind’ + cos 6 sin b))
—cos(046") —sin(0+0)
= r1'(cos(d + ¢') + isin(6 + "))

On adonc Arg(zz') = 0 + ¢’ = Arg(z) + Arg(2').
3) On calcule

z r cosf +isinf

2 1 cos@ + isin @
En multipliant et divisant par le conjugué cos ' — isin ¢, et en simplifiant un peu,

z

!/ ,r./

_ ! ((cos&cos 0" + sin @ sin 9') + i(sin@cos 0 — sin @’ cos 9))

z

= E/(COS(Q —0') +isin(¢ —¢")),
r

et donc .
Arg(;) =0 -0 = Arg(z) — Arg(2')
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4) Sin = 1liln’y arien a démontrer puisque
Arg(z') =1- Arg(2).

Supposons que la formule a été démontrée pour n, c’est-a-dire supposons que Arg(z") = n Arg(z).
On vérifie que la formule vaut aussi pour n + 1, en calculant

Arg(2"h) = Arg(2"2)
— Arg(=") + Arg(2)
=nArg(z) + Arg(z) = (n+ 1) Arg(z).

O

Voyons les conséquences de ces propriétés.
D’abord, on apprend quelque chose sur l'interprétation géométrique de la multiplication com-
plexe :

Corollaire 5. Soit w € C un nombre complexe de module r et d’argument 6. Alors pour tout z € C, le
complexe wz est obtenu en faisant tourner z autour de I'origine, d'un angle de = Arg(w) (dans le sens
anti-horaire), et en multipliant son module par r.

Preuve: En effet, wz a pour module |wz| = |w]||z| = 7|z|, et pour argument
Arg(wz) = Arg(w) + Arg(z) = Arg(z) + 6.
O

En particulier, si |w| = 1, la multiplication de z par w revient a simplement faire tourner z d'un
angle § = Arg(w) (sur cette animation, on a représenté le cercle de rayon 1 en traitillé) :

z

Wz

Si, plutdt que de multiplier z par un complexe w, on le multiplie par lui-méme, un nombre arbi-
traire de fois, on obtient la formule de Moivre (lien web) :

Théoreme 2.11. (Formule de Moivre) Si z = r(cos 6 + isin 8), alors pour tout entier n > 2,
2" = 1" (cos(nb) + isin(nf)) .
Preuve: Par la propriété Arg(z") = n Arg(z), utilisée pour le complexe cos € + isin6 :

z (cosf +isind))"

n _ (7“
=7"(cosf + isin 9)”
= r"(cos(nh) + isin(nf)) .
O

Sur I’animation ci-dessous, on a représenté un complexe z, ainsi que ses puissances 2", pour n =
1,2,3,4,5,6 (déplacer 2!) :
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Cette animation permet de voir la formule de Moivre a I'oeuvre, “a l'oeil nu”. En effet,
* l'argument de 2" est égal a I'argument de z multiplié par n, et

* le module de 2" est égale au module de z élevé a la puissance n. Par conséquent, si |z| < 1
(z est a l'intérieur du cercle de rayon 1, représenté en traitillé), alors les puissances z" sont
plus proches de I'origine, et si |2| > 1 (2 est a I'extérieur de ce cercle), alors les puissances 2"
sont plus éloignées de 1'origine.)

Informel 2.12. Maintenant que 1'on a compris 1’application “mettre au carré dans le plan com-
plexe”, z — 2%, on peut comprendre facilement ce qu’est I’ensemble de Mandelbrot (lien web),
en regardant par exemple la premiere moitié de cette vidéo : This fractal is more complex than
the Mandelbrot set (Stand-up maths (lien web).

2.4 Exponentielle complexe

Considérons la fonction ¢ : R — C définie par
©(0) :=cosf +isinf .

Par la propriété de I'argument,
P(O)p(0) = p(0 +6').

Cette relation n’est pas sans rappeler la propriété de base de la fonction exponentielle (définie sur
R):

On peut profiter de cette analogie pour introduire une nouvelle fonction sur C :

Définition 2.13. Soit z € C. Alors I’exponentielle complexe est la fonction définie par

exp: C—>C
2+ exp(z) 1= e®®)(cos(Im(2)) + isin(Im(z))).

Remarque 2.14. Dans cette définition, la partie “eR¢(*)” est 'exponentielle classique (du réel Re(2)),
et “cos” et “sin” sont les fonctions trigonométriques usuelles. En particulier, si Im(z) = 0, c’est-a-
dire si z est un nombre réel, alors exp(z) coincide avec “l’exponentielle de z” au sens classique du
terme. Pour cette raison, par abus de notation, nous écrirons souvent “e*” au lieu de “exp(z)”. ©
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Proposition 5. (Propriétés de z — exp(z))
1) e?e? — er+
2) |€z‘ — eRe(z)
3) Arg(e®) =Im(z)

4) e* T2k = = (périodicité dans la direction imaginaire)

Preuve: 1) suit de la formule pour 'argument : si z = = + iy, 2/ = 2’ + i/, alors en utilisant la fonction ¢,

! / H /
o — et Hi(y+y)

= o te (cos(y +¢/) +isin(y +y'))
= "oy +y/)

=" p(y)ey)

=e"e

T

2)Siz = w+ iy, alors || = |e"p(y)| = |e”|lp(y)] = |e”| = €.

3) et 4) suivent directement de la définition de e*. O]

Informel 2.15. La définition de ¢* donnée ci-dessus peut paraitre un peu arbitraire. En analyse
complexe, I'exponentielle est en général définie par une série (nous ne traiterons pas des séries
complexes dans ce cours) :

n

exp(z) :== Z % :

n=0 ’

On peut montrer que cette définition satisfait a toutes les propriétés énoncées ci-dessus, et qu’elle
coincide avec I'expression que nous avons utilisée pour définir e.

2.4.1 Exponentielle de nombres purement imaginaires, Formule d’Euler

L’exponentielle d"un nombre purement imaginaire iy n’est autre que ¢(y) :
e =cosy +isiny.

Ainsi, la fonction y — €" jouit des propriétés suivantes :
* e =1
* el = el(-v)
* el = ilyty)

% €0 — cily=y)

e’
. _ eY—eTlY
* SINY = o
_ eV4e
* COSY = B —

Observons e pour quelques valeurs particulieres de y.

[VE]

*x ez =],
*x e2km — 1 Vk € Z,
* Formule d’Euler: ¢™ = —1.
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2.4.2 Représentation polaire/exponentielle

Si un complexe z € C est tel que |z| = r et Arg(z) = 6, on peut maintenant le représenter sous
forme polaire/exponentielle (on dira plus simplement polaire) :

z=re
La formule de Moivre devient maintenant :

2" = (re?)" = 1" = r"(cos(nf) + isin(nd)) .

La représentation exponentielle des nombres complexes est trés utile, par exemple pour calculer
des puissances :

Exemple 2.16. Si 2z = 2 — 21/3i, calculons 2%,
Calculer cette puissance en multipliant z par lui-méme 998 fois, a I’aide de la définition du produit

complexe uniquement, n’est probablement pas une bonne idée. Utilisons plutot la forme polaire
de z, déja calculée plus haut :

2= 4

Par la formule de Moivre,
999 _ 4999 ,i(—999F) _ 4999 ,i(—333m) _ 4999 i(—166-2n—m) (2.4)
_ 4999 ei(—166~2ﬂ') ei(—TF) (25)

=1 =1
= 499 (2.6)
o
Exemple 2.17.
NoE G

LoVt (V2ETINY et item
(1+i) ( NGEE ) (7H) = ‘

o

Finalement, la notation polaire/exponentielle est utile pour résoudre des équations en une va-

riable complexe z. Pour cela, on aura souvent besoin de se souvenir que si z, 2’ sont deux nombres
L ) : >

complexes écrits sous forme polaire, z = re et 2/ = r'e?, alors

!/

z2=2z 2 r=retd =0 +2kn

pour un entier k qui peut étre quelconque.
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Exemple 2.18. Considérons I'équation complexe

O

On se rend vite compte, en essayant de poser z = a + ib, que 'approche cartésienne n’est pas la
bonne . Ecrivons plutdt z = re. Puisque r > 0 (sinon I’équation n’est pas définie), 'équation

devient ’
1
(re >2_ 0
. =re"”,
re=if

e|49 — 7’6‘9 .

qui est

On a donc (voir la remarque ci-dessus) r = 1, et
40 = 0 + 2k,

ce qui donne § = k27, et donc les solutions sont de la forme z = ¢ . On obtient exactement trois
solutions distinctes en prenant £ = 0,1, 2. o

Dans la section suivante, nous verrons l'utilité de la notation polaire/exponentielle pour trouver
les racines d’un nombre complexe.

2.5 Racines de nombres complexes

Un autre avantage de travailler avec la forme polaire/exponentielle est qu’elle fournit une ap-
proche rigoureuse dans la recherche des racines d’'un nombre complexe.

Définition 2.19. Soit w € C et n € N un entier. Un complexe z € C qui satisfait
M=w

est appelée racine n-éme de w.

Remarquons que w = 0 ne possede qu’une seule racine, car 2" = 0 n’a qu’'une seule solution :
z = 0. Mais un complexe w # 0 possede exactement n racines n-emes :

Théoréme 2.20. Soit w = se?, s > 0. Si n € N,, alors les racines n-émes de w sont données par

{zk:%-eiw : k:0,1,2,...,n—1}

Preuve: En écrivant z = re'?, par de Moivre, 2" = r?ei™ Dong, 2" = w si et seulement si r"e™ = sei?, ce
qui entraine
r'* =s, nd = ¢+ 2km,
ou k est arbitraire, ce qui donne
r= s, 0= ¢+ 2k7 )
n
Remarquons que les entiers k qui donnent des solutions distinctes sont £ = 0,1,2,...,n — 1. O

Par I'expression ci-dessus, on voit que les racines n-emes de w sont réparties sur un cercle de
rayon {/s, aux sommets d'un polygone régulier. Voyons quelques exemples.

NumChap: chap-nombres-complexes, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 31


botafogo.saitis.net

2.5. Racines de nombres complexes

Exemple 2.21. Calculons les racines 2-emes (appelées aussi racines carrées) de —1 + i, qui sont les
z tels que

2= —1+i
On utilise le théoréeme du dessus. Comme iciw = —1+i=+2- ei%, les racines sont
4 _%f+2k7r 4 . 37 k
Ze=V2-e" 7 =2 F k=01,

c’est-a-dire

4 3™ 4 jlim
Z20=V2 €%, 2 =v2-€ew .

Les racines z, et z; sont sur un cercle de rayon v/2, et leur carré est bien égal a w = —1 + i (sur
’animation ci-dessous, déplacer z de fagon a ce que 2% = —1 + i) : o
-1+ 20 )
z
[ ]

<1

Informel 2.22. Si 22 = —1 + i, on pourrait étre tenté d’écrire = = ++/—1 + i, mais on n’a pas de
fonction “racine carrée” dans C! On évitera donc d’utiliser le symbole “+/---” pour les nombres

complexes, la fonction z — /2 étant une fonction compliquée de définir rigoureusement sur tout
C.

Exemple 2.23. Calculons les racines cubiques de i :

27 =1.
Commei = 1-¢'%, les racines sont
3 (5 2k (T 2kT
e=V1-e" 35 =Gt k=0,1,2,
c’est-a-dire
iz i2r isr
Zp = €6, zZ1 =€ 6, 2o =€ 2 .

Ces racines sont sur le cercle trigonométrique, aux sommets d'un triangle équilatéral, rendu vi-
sible sur cette animation :

z1 z0

on
L A8

o<

<2

32
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o
Exemple 2.24. Calculons les racines sixiémes de 1'unité, c’est-a-dire les solutions de
A =1,
Sous forme polaire, 1 = 1€, et donc ses racines sixieémes sont
042k km
Ze=V1-e 5 =¢s | k=0,1,2,3,4,5.
22 21
ZG Q.Z
Z3 L] Zp
1
24 Z5
o

2.6 Le Théoréme Fondamental de 1’Algebre

Soit P(z) un polyndme complexe en z :
P(2) = ap + a1z + ap2® + - - - + a, 2",

ot les coefficients a;, € C. On dit que P est de degré n si a,, # 0.

Si z, € Cest tel que
P(z,) =0,

z, est appelé racine du polynome.

On sait que dans les réels, certains polyndmes (comme par exemple z? + 1) ne possédent pas de
racines réelles. Dans les complexes, c’est tres différent :

Théoreme 2.25. (Théoréeme Fondamental de I’ Algebre) Dans C, tout polynome P de degré n > 1 possede
au moins une racine.

Nous ne donnerons pas la preuve complete de ce théoréme, mais nous esquisserons un argument
géométrique qui contient I'idée centrale de ’argument, sur un exemple. L’adaptation au cas géné-
ral ne présente pas de difficulté supplémentaire (méme si des notions un peu plus avancées sont
nécessaires pour 'exprimer rigoureusement).

2.6.1 Idée de la preuve, sur un exemple

Considérons le polyndme suivant, de degré 5,

P(z)=(2+1i)+iz+2".
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Ce polyndme contient un terme constant non-nul, 2 + i # 0, et il ne posséde pas de racine fa-
cilement “devinable”. Pourtant, le Théoreme Fondamental dit qu’il doit posséder au moins une
racine. Voyons comment on peut, par un argument géométrique, se convaincre que c’est effecti-
vement le cas.

Cherchons une racine z écrite en forme polaire,

Nous allons balayer C avec z, en passant des petites aux grandes valeurs du rayon » > 0; pour
chaque valeur fixée de 7, on consideére tous les arguments possibles 6 € [0, 27]. Nous allons donc
“tester” tous les points z € C, en voyant C comme constitué d’une infinité de cercles centrés a
l'origine.

Pour commencer, remarquons que si 7 = 0, alors z = 0, et 'image de ce point par P est égale au
terme constant :

P0)=2+i#0.
Donc z = 0 n’est pas racine de ce polyndme, et on commence a augmenter le rayon.

Pour un r» > 0 fixé, considérons le cercle C;, C C de rayon r centré a l'origine (en rouge sur
I’animation ci-dessous).

L'image de C, par P,
P(C,):={P(z) : z€ C,},

est une courbe fermée dans C que nous appellerons lacet (en bleu sur I’animation ci-dessous).
Si le lacet P(C,) touche 'origine, c’est qu’il existe un z € C, tel que P(z) = 0.

Remarquons ensuite que

* Sir est petit, P(C,) est un petit lacet qui entoure P(0) = 2 +i.

* Sir est grand, alors P(C,) est un grand lacet qui entoure 5 fois 1’origine.

En augmentant r progressivement, il doit donc exister au moins une valeur 7, > 0 pour laquelle
P(C,,) touche l'origine. Donc pour cette valeur r,, il existe un z, € C,, tel que P(z,) = 0.

r=0.887... P(z)=2+itiz+2°

P(z)=(2+1i)+iz+2".
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.........
-----

*
..........

On comprend que la preuve du résultat général (pour un polyndme P quelconque) peut se faire
en adaptant 1'idée présentée ci-dessus. Le méme argument est présenté dans The Fundamental
Theorem of Algebra (Numberphile) (lien web).

2.6.2 Conséquences

Lemme 10. Soit P(z) un polynome de degré n > 1, et soit zy € C un complexe fixé. Alors il existe un
unique polynome ()(z), de degré n — 1, tel que

P(z) = (2 — 20)Q(2) + P(20) VzeC.

Preuve: Supposons que P est de la forme
P(z) =ag+ a1z + agz® + - + a,2".
Considérons les nombres by, b1, . . ., b,—1 définis inductivement par
bp_1:=an
bp—2 = 20bp—1 + an—1
b1 = Z()b2 + as
bo := zpb1 + a1,

et définissons

Q(2) :==bg + b1z +boz? + -+ b, 12" L.
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Remarquons que si on développe le produit (z — z9)Q(z) et qu’on regroupe les puissances de z, on obtient :

(z — 20)Q(z) = — z0bo
+ (bo — Zobl) z
—_———
=a1
+ (b1 — zob2) 2
—_——
=as
+ (bp—2 — zobp—1) 2"
—_—
=an-—1
+ by 2"
—

= —2z0bo + (P(2) — ap)

-1

c’est-a-dire
(Z — ZQ)Q(Z) + zobo + ap = P(Z) .

En évaluant cette identité en z = z(, on obtient z¢by + ag = P(zp), et donc

(2 = 20)Q(2) + P(20) = P(2).

Ce résultat implique que si z; est une racine de P, alors P peut se factoriser en un produit :

P(z) = (2 = 20)Q(2)

ou () est la division de P par z — z;; on peut obtenir () par division Euclidienne, ou alors a I’aide
de la formule de récurrence pour ses coefficients, vue dans la preuve du lemme (on appel cette
relation un Schéma de Horner).

On peut maintenant énoncer une version un peu plus forte du Théoréme Fondamental :

Théoréme 2.26. Dans C, tout polynome P de degré n > 1 possede n racines : il existe zy, . . ., z, € C tels
que
P(z)=0 Vk=12,...,n.

De plus, P peut se factoriser comme suit :

Pz)=apn(z—21) (2 —2z,).

Preuve: Soit P un polynome de degré n. Alors le Théoreme Fondamental et le lemme du dessus garan-
tissent qu’il existe z; € C et un polyndme Q(z), de degré n— 1, tel que P(z) = (z — z1)Q(z). On peut ensuite
répéter 'argument avec () : il existe zp € C et un polyndme ' (z), de degré n—2, tel que Q(z) = (z—22)Q'(2),
etc. Le procédé se termine lorsque P s’est exprimé comme un produit

Pz)=C(z—21)(z — 22) -+ (2 — zn)

ou C' € C est une constante. Puisque le terme de plus haut degré associé a ce produit est C2", on en déduit
que C = ay,. O

Sile Théoreme Fondamental et le lemme du dessus nous ont montré que tout polyndome de degré
n peut se factoriser en produit de n facteurs, trouver ces facteurs n’est pas un exercice simple en
général. Nous verrons quelques exemples dans la section suivante.
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2.7 Polynoémes et factorisation

Le Théoréme Fondamental garantit qu'un polynéme complexe quelconque de degré n,
P(2) = ag + a1z + azz® + - + ap,2", a, # 0,
posseéde n racines complexes 21, 29, . . ., 2,,, et peut se factoriser en
P(z)=an(z—21) (2 — zn) .

Passer de la premiere forme a la seconde est ce qu’on appelle la factorisation de P.

La factorisation est donc directement reliée a la connaissance des racines de P. Voyons quelques
exemples.

Exemple 2.27. Factorisons le polynome

P(2)=2"+22+2, (ag =1#0),

en commengant par chercher ses racines. L'équation P(z) = 0 ne posseéde pas de solutions réelles
puisque A = 4 — 8 = —4 < 0. Mais étant de degré 2, P(z) doit posséder deux racines complexes
(garanti par le Théoreme Fondamental de 1’Algebre). Voyons deux fagons de les trouver.

1) On pose z = a + bi (ot a et b sont réels!), que I'on injecte dans 1'équation 2% + 2z + 2 = 0,
pour trouver
(a® — b* +2a +2) +i(2ab+2b) = 0.

-~
=0 =0

On a donc un petit systeme

-0 +2a+2=0
2b(a+1) =0.

Considérons la deuxieéme condition : 2b(a + 1) = 0.
x Cas 1) : b = 0. Signifie que z est réel, or on a déja dit qu’il n'y a pas de solution réelle.
*x Cas 2):a = —1. Inséré dans la premiere condition, on obtient b = +/1 = +1.
On en déduit I'existence de deux racines, z; = —1 —ietzg = —1 +1i.
2) On utilise la formule classique
_ —bEVPE—dac -2+

2a 2
—2+2y-1

2
=—-1+v-1

=—-1%£i.

z

On a donc la factorisation de P :
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Remarque 2.28. Dans le cas général d"une équation du deuxieme degré de la forme
az> +bz+c¢=0,

ot a,b,c € Ceta # 0, on peut procéder comme dans le cas réel, en commengant par remarquer
que I'équation est équivalente a
N b\? b —dac
24+ — ) =— =w.
2a 4a?

Lorsque w # 0, on peut alors chercher ses deux racines (au sens de la section sur les racines de
complexes (lien vers la section m_complexes racines)), disons y, € C et y; € C, et conclure
que les deux racines du polynéme sont

b

2= —5= T Yk, k:071

2a
Donc la formule =t£vr-=tac V2b2_4ac, habituellement utilisée pour des polyndomes de degré 2 a coefficients
réels, peut aussi s’utiliser lorsque les coefficients sont complexes, sauf que dans ce cas, toutes les
grandeurs apparaissant sont complexes, et le terme “£+/b? — 4ac” doit se comprendre comme
étant la recherche des deux racines carrées du complexe b? — 4ac. o

La factorisation compléte d'un polyndme peut étre laborieuse, surtout si celui-ci est de degré
élevé. Nous verrons quelques exemples en fin de section.

Par contre, la factorisation d’un polyndéme de la forme P(z) = 2" — w s’obtient directement, a
partir des racines n-emes de w.

Exemple 2.29. Par un des exemples traités dans la section précédente, la factorisation de P(z) =

z3 — i est donnée par

5T 3T

P(2)=(z—€8)(z—€o)(z—e7).

2.7.1 Racines multiples

Ce que le théoreme fondamental ne dit pas, c’est si les racines sont distinctes; or elles ne le sont
pas toujours.

Définition 2.30. Si n, est le plus grand entier tel que (z — z.)"* divise P, on dit que z. est une
racine de P de multiplicité n..

Exemple 2.31. Le polyndme
P(z) =2 —2z—1= (2 —i)?
possede deux racines confondues : z; = 2z, = i. Donc i est une racine de multiplicité 2. o

En tenant compte des éventuelles multiplicités, la factorisation d'un polynéme de degré n est
donc de la forme
P(z) = an(z = 2,)" (2 = 25,)" -+ (2 = 2)"™

ol maintenant les racines z;,, ..., z;, sont toutes distinctes, et ou les entiers ny, ..., n; satisfont a
la condition: ny +ny +--- +ni = n.

Exemple 2.32. Le polyndme P(z) = z° — (4 — 3i)2? + (4 — 12i)z + 12i peut se factoriser ainsi :
P(2) = (2 + 3i)(z — 2)°.

Ainsi, la racine z; = —3i est de multiplicité n; = 1, et 2o = 2 est de multiplicité 2. o
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2.7.2 Racines d’un polynoéme a coefficients réels

Proposition 6. Soit P(z) un polyndme dont les coefficients sont tous réels (a;, € R). Si z, est une racine
de P,
P(z,)=0,

alors Z, est aussi racine de P :
P(z)=0.
Preuve: Soit P(2) = ag + a1z + azz® + - - - + a,2". Supposons que P(z.) = 0. Alors

P(Z%) = ag + a7 + a2 4+ - 4 an 7"

ap + a17x + agz2 + -+ + apzl

=ap+ a1z« + a2z + -+ apz?

(2)

i
o ol Ny

donc 7z, est aussi racine de P. O

Une conséquence intéressante est que si un polyndme a tous ses coefficients réels, alors a chaque racine
2, correspond une racine conjuguée : z,.

Exemple 2.33. On a vu plus haut que le polyndéme P(z) = 2? + 2z + 2, dont tous les coefficients
sont réels (agp = a; = 2, ay = 1), posseéde deux racines : z; = —1 — i et 25 = —1 + i. Et effectivement,
celles-ci sont conjuguées 1'une par rapport a 'autre :

29 — 21 .

Ce résultat a deux conséquences tres utiles. La premiére :

Corollaire 6. Si P est de degré impair et que tous ses coefficients sont réels, alors il posseéde au moins une
racine réelle.

Preuve: En effet, si P est de degré impair, alors par le théoreme fondamental de 1’algebre ’ensemble de ses
racines,
R:={z€C: P(z) =0},

contient un nombre impair d’éléments (méme si certaines racines sont confondues). Par la proposition ci-
dessus, si z € R est une racine telle que Im(z) # 0, alors R contient aussi Z # z. On peut donc retirer de R
toutes les paires de racines distinctes conjuguées de ce type.

¢ Z2 ig
2, E.s ek
N
2h TS
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Puisque R contient au départ un nombre impair d’éléments, on conclut qu’apres avoir retiré toutes ces
paires, il doit rester au moins une racine dont la partie imaginaire est nulle; cette racine est donc réelle. [

Remarque 2.34. Plus tard, on démontrera ce corollaire d"une autre maniere, a 1’aide du théoréme
de la valeur intermédiaire. o

Exemple 2.35. Le polyndme
P(z)=2"—nz8+v22—1

est de degré impair, et tous ses coefficients sont réels. Par le corollaire, il possede au moins une
racine réelle. o

2.7.3 Factorisation de polyndémes a coefficients réels
La deuxiéme conséquence est sur la structure de la factorisation des polynomes réels :

Corollaire 7. Tout polyndéme a coefficients réels P(x) peut se factoriser en un produit de polynomes irré-
ductibles de degré 1 ou 2, a coefficients réels eux aussi.

Preuve: Avec les mémes coefficients réels, laissons la variable devenir complexe : P(z). Par la proposition,
si z, est racine de P, alors Z, l’est aussi. Donc la factorisation de P sera de la forme

Or si on met ces deux termes ensemble, on obtient

(z—2) (2 —Zn) =22 — (2 + )2 + 2%
=22 (2Re(z4)) z + ]z*\Q ,
——— ~—

€R! €R!

qui est bien un polynome de degré 2 a coefficients réels. Ceci prouve l’affirmation. O

Exemple 2.36. Utilisons cette méthode pour donner une factorisation du polynéme réel
P(z)=2*+1

(dont tous les coefficients sont réels) par des polyndmes de degré 2 réels. On commence par cher-
cher ses racines complexes, qui sont solutions de P(z) = z* + 1 = 0. Ces racines satisfont donc
2* = —1; ce sont les racines 4-emes de w = —1. On trouve les racines 4-emes de —1, par la méthode

de la section précédente. On commence par écrire

w=-1=1 €7,
qui donne, par le théoreme,
s= V14T k=0,1,2,3.
On trouve donc
k::O:zo:ei%:—i—‘/?i—i—i‘/?§
l{:zl:zl:ei?’f:—‘/75+i*/75
:2.22— I%T:—\/Tﬁ—l\/T§
k;:3:ng,zei%:—P/Ti—i‘/T5
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La factorisation de P en facteurs irréductibles complexes est donc

P(z) = \1/(2 —20)(z — 21)(z — 22)(2 — 23) .

as=1

On remarque que

23:2:_07 =21

Les paires conjuguées de racines de P(z) = z* 4+ 1 sont donc (2o, 23) et (21, 22).

2, 2o

El=zz %,=£_‘

Z, 23

En regroupant ces termes dans la factorisation, on obtient des polyndmes de degré 2 a coefficients
réels :

(2 = 20)(2 = 23) = (2 = 20) (2 — =0)
=22 —2Rezz + |20)?
=22 V2241,

(2= 21)(z = 22) = (2 = 21)(z = =1)
=22 —2Reziz + ||?

=224 \/iz +1.
On obtient ainsi la factorisation de P en facteurs irréductibles réels :

P(z) = (2> = V22 +1) (22 + V22 +1).

Informel 2.37. Avec quelques bonnes idées, on peut parfois éviter de passer par tout ce forma-
lisme. Par exemple,
o e 1l = (A s L=
= (2 +1)? - 27°
= (2 +1)° - (V22)?
= (24+1-v22)(Z2 +1+v22)
= (22— V22 + 1)(P+ V22 +1).

Plus tard, on utilisera cette factorisation pour calculer I'intégrale indéfinie

/fld—jil:/(ﬁ—ﬁx—i-lc)lfﬁ—i—\/ﬁx—f-l)'
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2.7.4 Factorisation dans le cas général

Dans le cas général, pour factoriser un polyndome complexe P(z), on pourra

* essayer de trouver une premiere racine z; par titonnement,
* effectuer une division euclidienne de P(z) par (= — 21), et donc obtenir P(z) = (z — 21)Q(2),

* recommencer avec ()(z), etc.

Exemple 2.38. Factorisons
P(z)=2"—(2—-30)2" — (14 5)2 + 2+ 2i.

Pour commencer, en testant avec quelques nombres simples, on remarque que P(1) = 0 . Mainte-
nant qu’on a cette racine, on sait que P peut se factoriser :

P() = (=~ DQ(2).

On trouve ((z) en effectuant la division euclidienne de P(z) par (z — 1) :

\
22-(2-3¢) e (144802 + 2420 -t
2 -2° 2" -(1-3)2 - (2+2i)

| —(1-3E)2 - (44502 + 242/
~(e-3i)2% 4 (4-30)2

| -(2+2¢)2 +2+2
—{242¢)2 +2+2¢

o

On a donc
Q(z) =2 — (1 = 3i)z — (2 + 2i),

qu’on factorise a son tour. En remarquant que Q(—2i) = 0, on fait la division

\ -
- (4-3)e-2-2; | _2+2

T e 2 - (1-9)

-(2-i)2 - 2-2
—(1-0)8 -2(4-¢)

o
qui donne Q(z) = (z + 2i)(z — (1 —i)). On a donc factorisé P :

P(z)=(z—1)(2+2)(z — (1 —1)).
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