
Chapitre 7

Limites de fonctions

7.1 Introduction

Nous avons rencontré la notion de limite lorsque nous avons étudié les suites de réels.

Nous allons maintenant introduire diverses notions de limites, associées à une fonction réelle f
d’une variable réelle x. Nous étudierons donc la dépendance

x 7→ f(x) ,

et ceci dans deux situations particulières :

⋆ Lorsque x est au voisinage d’un point x0 ∈ R, nous définirons d’abord la limite

lim
x→x0

f(x) ,

ainsi que les limites latérales

lim
x→x−0

f(x) , lim
x→x+0

f(x) .

⋆ Lorsque x est au voisinage de l’infini, à savoir très grand, nous définirons les limites

lim
x→−∞

f(x) , lim
x→+∞

f(x) .

Ce deuxième cas sera essentiellement le même que pour les suites, limn→∞ an, et ne présen-
tera aucune difficulté réellement nouvelle.

Comme les propriétés satisfaites par ces limites seront essentiellement les mêmes que pour les
suites, nous ne donnerons pas toutes les preuves, qui pourront être faites en exercice.

7.2 Limite x→ x0

Commençons par étudier les valeurs d’une fonction f proche d’un point x0, avec la définition de
base de la limite en x0. Le point x0 pourra être un point intérieur du domaine de la fonction, ou
alors sur son bord.

Il y a trop de comportements possibles pour f(x) lorsque x s’approche de x0, donc dans notre
analyse, on se concentrera sur les comportements classiques observés dans nombre de fonctions
rencontrées en analyse, et qui sont les plus rencontrés dans le développement de la théorie des
fonctions. En particulier, on donnera un sens aux termes suivants :

⋆ f(x) tend vers L ∈ R lorsque x tend vers x0
⋆ f(x) tend vers l’infini lorsque x tend vers x0
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7.2. Limite x→ x0

7.2.1 Notion de voisinage

Informel 7.1. Pour définir la “limite de f(x) en x0”, nous allons étudier les valeurs de f(x) lorsque
x devient arbitrairement proche de x0. Et c’est la formulation rigoureuse de cette notion qui pose
souvent des difficultés.

Pour parler des réels x proches de x0, on utilisera la notion de voisinage.

Définition 7.2. Soit x0 ∈ R.

⋆ L’ensemble V = ]x0 − α, x0[∪]x0, x0 + α[, où α > 0, est appelé voisinage épointé de x0.

⋆ Une fonction f est définie au voisinage de x0 si il existe un voisinage épointé de x0, V , tel
que f(x) est définie pour tout x ∈ V .

Exemple 7.3. Aucune des fonctions

f(x) =
1

x
f(x) = log |x| f(x) = sin( 1

x2+x
)

n’est définie en 0, mais toutes sont bien définies dans un voisinage épointé de 0. ⋄

Par définition, un voisinage épointé de x0 contient une infinité de points distincts de x0. Mais
surtout : quelle que soit la distance δ > 0 qu’on choisit, aussi petite que l’on veut, il contient des
points x dont la distance à x0 est inférieure ou égale à δ :

0 < |x− x0| ⩽ δ .

7.2.2 Limite en un point

Un premier cas naturel à considérer est celui dans lequel les valeurs de f(x) tendent à se rappro-
cher d’un nombre, que l’on notera généralement L, à mesure que x se rapproche de x0.

Définition 7.4. Soit x0 ∈ R et f une fonction définie dans un voisinage épointé de x0. On dit que
f tend vers L ∈ R lorsque x tend vers x0 si pour tout ε > 0 il existe δ > 0 tel que |f(x) − L| ⩽ ε
dès que 0 < |x− x0| ⩽ δ.
Le réel L sera appelé la limite, et on utilisera la notation :

lim
x→x0

f(x) = L .

Remarque 7.5. ⋆ Dans cette définition, on peut prendre ε > 0 arbitrairement petit, et le nombre
δ > 0 doit en général être pris en fonction de ε.

⋆ Il est important de remarquer que l’étude de limx→x0 f(x) est indépendante de la valeur que
f prend en x0. En fait, f n’a même pas besoin d’être définie en x0 pour que sa limite existe !

⋄

Sur l’animation ci-dessous, choisir quelques valeurs de ε > 0, et adapter δ > 0 de façon à ce que

|f(x)− L| ⩽ ε dès que 0 < |x− x0| ⩽ δ .
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7.2. Limite x→ x0

Exemple 7.6. Considérons une fonction f : R \ {2} → R, telle que

f(x) =
x− 1

2
∀x ̸= 2 .

Étudions cette fonction dans un voisinage épointé de x0 = 2. Cela signifie que l’on ne s’intéresse
qu’aux valeurs de f(x) pour des réels x proches de 2, différents de 2.

À première vue, si x est proche de 2 alors x − 1 est proche de 1, et donc f(x) devrait être proche
de 1

2
. On peut donc conjecturer que

lim
x→2

f(x) = 1
2
.

Pour commencer, étudions la différence

|f(x)− 1
2
| =

∣∣∣∣x− 1

2
− 1

2

∣∣∣∣ = ∣∣∣∣x− 2

2

∣∣∣∣ = 1
2
|x− 2| .

Cette expression montre de façon assez transparente que f(x) est proche de 1
2

lorsque x est proche
de 2, et permet maintenant d’implémenter la définition de limite.

Fixons ε > 0. Par l’identité écrite plus haut, on a

|f(x)− 1
2
| ⩽ ε

si et seulement si
1
2
|x− 2| ⩽ ε ,

c’est à dire
|x− 2| ⩽ 2ε .

Ainsi, si on définit δ := 2ε, on a bien |f(x)− 1
2
| ⩽ ε dès que 0 < |x− 2| ⩽ δ. Ceci montre ce qu’on

voulait :
lim
x→2

f(x) = 1
2
.

Sur l’animation ci-dessous, choisir la valeur de ε, et voir comment adapter δ pour garantir que
tout x ∈ [2− δ, 2 + δ] ait son image f(x) ∈ [1

2
− ε, 1

2
+ ε] :
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7.2. Limite x→ x0

On observe que δ = 2ε est le “meilleur” δ possible .

Pour un autre exemple élémentaire traité en détails, cliquer ici (blackpenredpen) (lien web). ⋄

Informel 7.7. La fonction de l’exemple précédent a cela de particulier qu’elle a permis d’écrire
une proportionnalité exacte entre |f(x)− 1

2
| et |x− 2|,

|f(x)− 1
2
| = 1

2
|x− 2| ,

ce qui a permis de facilement trouver un δ en fonction de ε.
Il n’y a que les fonctions du type f(x) = ax+ b pour lesquelles cette proportionnalité est explicite,
c’est-à-dire pour lesquelles on peut toujours écrire quelque chose comme (pour un L bien choisi)

|f(x)− L| = C|x− x0| ,

où C est une constante qui ne dépend pas de x.

Si on ne peut pas faire de même dans un cas général, on pourra quand-même essayer de majorer
la différence |f(x)− L| comme suit :

|f(x)− L| ⩽ C|x− x0| ,

ce qui permet également de trouver un δ en fonction de ε.

Exemple 7.8. Considérons

f(x) :=


3

2x+ 5
si x ̸= 2 ,

√
2 si x = 2 ,

et montrons que

lim
x→2

f(x) =
1

3
.

Commençons par écrire la différence. Lorsque x ̸= 2,

|f(x)− 1
3
| =

∣∣∣ 3

2x+ 5
− 1

3

∣∣∣ = 2

3

|x− 2|
|2x+ 5|

.

De par la présence de “|x − 2|” au numérateur, cette expression exprime bien que |f(x) − 1
3
| sera

proche de zéro lorsque x sera proche de 2. Mais pour rendre l’argument rigoureux il faut d’abord
faire quelque chose pour ne plus avoir de “x” au dénominateur de la fraction. Nous allons donc
travailler pour minorer le dénominateur par une quantité strictement positive, qui ne dépend pas
de x.
Si on suppose par exemple que x est à distance au plus 1 de 2, |x−2| ⩽ 1 (c’est-à-dire −1 ⩽ x−2 ⩽
1), alors on peut écrire que

2x+ 5 = 2(x− 2 + 2) + 5 = 2(x− 2) + 9 ⩾ 2(−1) + 9 = 7 ,
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7.2. Limite x→ x0

qui implique en particulier que

|f(x)− 1
3
| = 2

3

|x− 2|
2x+ 5

⩽
2

3

|x− 2|
7

=
2

21
|x− 2| .

Dorénavant, nous supposerons donc que |x− 2| ⩽ 1. Maintenant, fixons un ε > 0. L’inégalité que
nous avons obtenue au-dessus dit que pour rendre |f(x)− 1

3
| plus petit que ε, il suffit de d’abord

rendre 2
21
|x− 2| plus petit que ε. Or

2

21
|x− 2| ⩽ ε ⇐⇒ |x− 2| ⩽ 21

2
ε .

Ainsi, si on définit

δ := min
{21

2
ε, 1
}
,

alors 0 < |x− 2| ⩽ δ implique |f(x)− 1
3
| ⩽ ε. ⋄

Exemple 7.9. Considérons
f(x) := e−

1
x2 ,

qui est bien définie partout, sauf en x = 0. Montrons que

lim
x→0

f(x) = 0 .

Fixons donc un ε > 0, et montrons que l’on peut trouver un δ > 0 tel que

|e−
1
x2 | ⩽ ε ∀ 0 < |x| ⩽ δ .

Pour cela, on remarque d’abord que, l’exponentielle étant toujours strictement positive, |e−
1
x2 | =

e−
1
x2 . Or on peut résoudre l’inégalité e−

1
x2 ⩽ ε explicitement. D’abord, en prenant le log(·) (qui est

une fonction croissante) des deux côtés de l’inégalité, et en changeant le sens de l’inégalité :

1

x2
⩾ − log(ε) .

Cette dernière est toujours vraie si ε ⩾ 1 ; dans ce cas on peut donc prendre n’importe quel δ,
par exemple δ = 2. Ensuite, considérons le cas où 0 < ε < 1. Dans ce cas, log(ε) < 0, et donc
− log(ε) = | log(ε)|. On a donc montré que

|f(x)| ⩽ ε si et seulement si |x| ⩽ 1√
| log(ε)|

.

On peut donc conclure en prenant

δ :=
1√

| log(ε)|
.

On voit, par ce calcul, que plus ε > 0 est choisi petit, plus x doit être pris proche de 0 pour que
|f(x)| ⩽ ε. ⋄

7.2.3 Premières propriétés de la limite

Lemme 20. Si la limite existe, elle est unique. Plus précisément : si il existe deux nombres L1, L2 ∈ R tels
que

lim
x→x0

f(x) = L1 , lim
x→x0

f(x) = L2 ,

alors L1 = L1.
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7.2. Limite x→ x0

Preuve: (La preuve suit exactement ce qu’on a fait pour les suites !)

Supposons, par l’absurde, que f tende vers deux limites différentes, L1 ̸= L2. Sans perte de généralité, on
peut supposer que L1 < L2. Définissons

ε :=
L2 − L1

3
,

qui est strictement positif par hypothèse. Aussi, L2 − L1 > ε.

⋆ Par définition de L1, il existe δ1 > 0 tel que |f(x)− L1| ⩽ ε dès que 0 < |x− x0| ⩽ δ1.

⋆ Par définition de L2, il existe δ2 > 0 tel que |f(x)− L2| ⩽ ε dès que 0 < |x− x0| ⩽ δ2.

Définissons maintenant
δ := min{δ1, δ2} .

Considérons alors un x tel que 0 < |x−x0| ⩽ δ. Comme δ ⩽ δ1, on a que |f(x)−L1| ⩽ ε. Et, comme δ ⩽ δ2,
on a que |f(x)− L2| ⩽ ε. On a donc, par l’inégalité triangulaire, que

|L1 − L2| = |(L1 − f(x))− (L2 − f(x))|

⩽ |L1 − f(x)|+ |L2 − f(x)| ⩽ 2ε =
2

3
|L1 − L2| ,

ce qui est absurde

Le résultat suivant offre une caractérisation alternative de la limite en un point, en établissant
un lien avec la notion de limite introduite précédemment pour le suites de réels. (En fait, cer-
tains textes/enseignant.e.s utilisent cette caractérisation pour définir la limite d’une fonction en
un point.)

Lemme 21. (Critère d’existence via les suites) Soit f définie au voisinage de x0. Alors

lim
x→x0

f(x) = L

si et seulement si pour toute suite (an)n satisfaisant an ̸= x0 pour tout n et an → x0 lorsque n→ ∞, on a
que

lim
n→∞

f(an) = L .

Preuve: ⇒: Supposons que limx→x0 f(x) = L. Prenons une suite (an)n telle que an ̸= x0 pour tout n, et
telle que an → x0. Fixons ε > 0. Par la définition de limite, il existe δ > 0 tel que |f(x) − L| ⩽ ε dès que
0 < |x − x0| ⩽ δ. Puisque an → x0, il existe un entier N tel que |an − x0| ⩽ δ, et donc |f(an) − L| ⩽ ε, ceci
pour tout n ⩾ N . Ceci montre que f(an) → L.

⇐: Supposons maintenant que f(an) → L pour toute suite an → x0. Par l’absurde, supposons que f(x) ne
tend pas vers L lorsque x tend vers x0. Cela signifie qu’il existe ε∗ > 0 pour lequel il n’existe aucun δ > 0 tel
que |f(x)− L| ⩽ ε∗ dès que 0 < |x− x0| ⩽ δ. Considérons alors la suite δn = 1

n et pour tout n, considérons
un xn tel que 0 < |xn − x0| ⩽ δn et |f(xn)− L| > ε∗. On a donc une suite (xn) telle que xn → x0, mais pour
laquelle f(xn) ne tend pas vers L, une contradiction.

Ce critère est en général utilisé pour montrer qu’une fonction f n’a pas de limite lorsque x → x0.
Pour ce faire, on pourra soit trouver une suite xn → x0 pour laquelle limn→∞ f(xn) n’existe pas,
ou alors trouver deux suites xn → x0, yn → x0 telles que les suites f(xn) et f(yn) possèdent des
limites différentes lorsque n→ ∞ :

lim
n→∞

f(xn) ̸= lim
n→∞

f(yn)

Exemple 7.10. Montrons que la fonction f(x) = sin( 1
x
) n’a pas de limite lorsque x → 0. Pour ce

faire, considérons deux suites qui tendent vers zéro.
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7.3. Le théorème des deux gendarmes

⋆ Pour la première, prenons xn = 1
π
2
+2πn

, pour laquelle

f(xn) = sin( 1
xn
) = sin(π

2
+ 2πn) = 1 ∀n

⋆ Pour la deuxième, prenons yn = 1
3π
2
+2πn

, pour laquelle

f(yn) = sin( 1
yn
) = sin(3π

2
+ 2πn) = −1 ∀n

On a donc xn → 0 et yn → 0, mais

lim
n→∞

f(xn) ̸= lim
n→∞

f(yn) .

Le théorème ci-dessus implique donc que la limite limx→0 f(x) n’existe pas. ⋄

7.3 Le théorème des deux gendarmes

Le résultat suivant est l’analogue de celui vu précédemment pour les suites ; il est utile pour
calculer une limite x → x0 en comparant f(x), proche de x0, à deux fonctions plus simples dont
on sait calculer les limites. On formule le résultat pour la limite x → x0, mais il peut aussi se
formuler pour les limites latérales (section suivante).

Théorème 7.11. (Théorème des deux gendarmes) Soit f définie sur un voisinage V épointé de x0. Soient
g, h, également définies sur V , telles que

1) g(x) ⩽ f(x) ⩽ h(x) pour tout x ∈ V ,

2) lim
x→x0

g(x) = lim
x→x0

h(x) = L.

Alors la limite de f lorsque x tend vers x0 existe et vaut L :

lim
x→x0

f(x) = L .
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7.3. Le théorème des deux gendarmes

Preuve: Fixons ε > 0.

⋆ Puisque limx→x0 g(x) = L, il existe un δ1 > 0 tel que |g(x)− L| ⩽ ε dès que 0 < |x− x0| ⩽ δ.

⋆ Puisque limx→x0 h(x) = L, il existe un δ2 > 0 tel que |h(x)− L| ⩽ ε dès que 0 < |x− x0| ⩽ δ2.

Posons δ := min{δ1, δ2}. Si x est tel que 0 < |x− x0| ⩽ δ, on a donc à la fois |g(x)− L| ⩽ ε et |h(x)− L| ⩽ ε,
ce qui donne

f(x)− L ⩽ h(x)− L ⩽ |h(x)− L| ⩽ ε ,

mais aussi
f(x)− L ⩾ g(x)− L ⩾ −|g(x)− L| ⩾ −ε .

Et donc |f(x)− L| ⩽ ε.

Exemple 7.12. Considérons la fonction

f(x) = |x| sin

(
1√
5|x|

)
,

bien définie dans un voisinage épointé de x0 = 0. Pour calculer sa limite lorsque x → 0, on peut
remarquer que −1 ⩽ sin(· · · ) ⩽ +1, et donc pour tout x ̸= 0,

−|x|︸︷︷︸
=g(x)

⩽ f(x) ⩽ |x|︸︷︷︸
=h(x)

Comme limx→0 g(x) = limx→0 h(x) = 0, le théorème des deux gendarmes implique que limx→0 f(x) =
0. ⋄
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7.4. Limites latérales x→ x±0

7.4 Limites latérales x→ x±0

On parle alors de limite latérale si les valeurs d’une fonction tendent vers une valeur lorsqu’on
s’approche d’un point x0 en maintenant le signe de x− x0 constant :

Définition 7.13. Soit x0 ∈ R.

⋆ Soit f une fonction définie sur un intervalle de la forme ]x0, x0 + α[ (α > 0). On dit que f
tend vers L ∈ R lorsque x tend vers x0 par la droite si pour tout ε > 0 il existe δ > 0 tel que
|f(x)− L| ⩽ ε dès que 0 < x− x0 ⩽ δ, c’est-à-dire x0 < x ⩽ x0 + δ. On notera :

lim
x→x+0

f(x) = L .

⋆ Soit f une fonction définie sur un intervalle de la forme ]x0 − α, x0[ (α > 0). On dit que f
tend vers L ∈ R lorsque x tend vers x0 par la gauche si pour tout ε > 0 il existe δ > 0 tel
que |f(x)− L| ⩽ ε dès que −δ ⩽ x− x0 < 0, c’est-à-dire x0 − δ ⩽ x < x0. On notera :

lim
x→x−0

f(x) = L .

Donc une fonction peut par exemple posséder une limite latérale à droite en x0, sans être du tout
définie à gauche de x0 :

Exemple 7.14. Par exemple, f(x) =
√
x est définie seulement sur R+ = [0,+∞[, et

lim
x→0+

f(x) = 0 .

En effet, pour tout ε > 0, on a |f(x)| =
√
x ⩽ ε si et seulement si x ⩽ ε2, et donc on peut prendre

δ := ε2. ⋄

Mais une fonction peut être définie de part et d’autre de x0, et n’avoir qu’une seule limite latérale :
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7.4. Limites latérales x→ x±0

Exemple 7.15. Considérons, sur R∗, la fonction

f(x) :=


1− x2 si x < 0 ,

π si x = 0 ,

sin(1/x) si x > 0 .

Alors f n’a pas de limite à droite en x0 = 0, comme on sait, mais

lim
x→0−

f(x) = 1 .

⋄

Intuitivement, si les limites latérales en un point existent et sont égales, alors la vraie limite en ce
point existe et prend la même valeur :

Théorème 7.16. Soit f définie dans un voisinage épointé de x0. Les deux affirmations ci-dessous sont
équivalentes :

1) lim
x→x0

f(x) = L

2) lim
x→x+0

f(x) = lim
x→x−0

f(x) = L

Preuve:
1) Supposons que limx→x0 f(x) = L, c’est-à-dire que pour tout ε > 0 il existe un δ > 0 tel que |f(x) −

L| ⩽ ε dès que 0 < |x − x0| ⩽ δ. Or 0 < x − x0 ⩽ δ et −δ ⩽ x − x0 < 0 impliquent évidemment
0 < |x− x0| ⩽ δ. Et donc limx→x+0

f(x) = limx→x−0
f(x) = L

2) Maintenant, supposons que limx→x+0
f(x) = limx→x−0

f(x) = L, et fixons ε > 0. On a d’une part
l’existence d’un δ− > 0 tel que |f(x) − L| ⩽ ε dès que −δ− ⩽ x − x0 < 0, et d’autre part l’existence
d’un δ+ > 0 tel que |f(x)−L| ⩽ ε dès que 0 < x− x0 ⩽ δ+. En prenant δ := min{δ−, δ+}, on garantit
que si 0 < |x − x0| ⩽ δ, alors −δ− ⩽ x − x0 < 0 et 0 < x − x0 ⩽ δ+, et donc dans tous les cas,
|f(x)− L| ⩽ ε.

Il existe naturellement une version latérale du Théorème des deux gendarmes, ou du théorème
sur l’équivalence avec les limites par des sous-suites, dans le cas des limites latérales.
Exemple 7.17. Considérons

f(x) = x

⌊
1

x

⌋
,

qui est bien définie en tout x ̸= 0. Pour calculer sa limite lorsque x→ 0, commençons par rappeler
que par la définition de valeur entière,

1

x
− 1 <

⌊
1

x

⌋
⩽

1

x
, ∀x ̸= 0 .

On utilise cette double inégalité pour étudier les limites latérales en zéro :
⋆ Si on la multiplie des deux côtés par x > 0,

x

(
1

x
− 1

)
︸ ︷︷ ︸

=1−x

< f(x) ⩽ x · 1
x︸︷︷︸

=1

, ∀x > 0 .

Puisque limx→0+(1 − x) = 1, le Théorème des deux gendarmes (en version “latérale”) im-
plique que

lim
x→0+

f(x) = 1 .
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7.4. Limites latérales x→ x±0

⋆ Si on la multiplie des deux côtés par x < 0,

x

(
1

x
− 1

)
︸ ︷︷ ︸

=1−x

> f(x) ⩾ x · 1
x︸︷︷︸

=1

, ∀x < 0 .

Puisque limx→0−(1 − x) = 1, le Théorème des deux gendarmes (en version “latérale”) im-
plique que

lim
x→0−

f(x) = 1 .

Puisque les limites larérales existent et sont égales,

lim
x→0

f(x) = 1 .

⋄

Le théorème précédent est aussi utile pour montrer qu’une limite x → x0 n’existe pas. Pour ce
faire, on pourra

⋆ montrer qu’une des limites latérales, x→ x+0 ou x→ x−0 , n’existe pas, ou

⋆ montrer que les limites latérales x→ x+0 et x→ x−0 , existent mais ont des valeurs différentes.

Exemple 7.18. Considérons

f(x) =
|x2 − 1|
x− 1

,

et montrons que la limite lim
x→1

f(x) n’existe pas.

D’abord, remarquons que |x2−1| = |x−1| · |x+1|. Ensuite, si x est proche de 1, alors |x+1| = x+1,
mais

|x− 1| =

{
+(x− 1) si x > 1 ,

−(x− 1) si x < 1 .

On peut donc facilement calculer les limites latérales :

lim
x→1−

f(x) = lim
x→1−

−(x− 1)(x+ 1)

x− 1
= lim

x→1−
−(x+ 1) = −2 ,

lim
x→1+

f(x) = lim
x→1+

(x− 1)(x+ 1)

x− 1
= lim

x→1+
(x+ 1) = 2 ,

Comme les limites latérales existent mais sont inégales, on conclut que f(x) n’a pas de limite
lorsque x→ 1. ⋄
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7.5 Propriétés de la limite

Nous avons vu pour l’instant trois notions de limites en un point x0 :

lim
x→x0

, lim
x→x+0

, lim
x→x−0

.

Or ces limites obéissent à des propriétés standards qui sont semblables à celles des suites. Plutôt
que de les répéter séparément pour chaque notion, nous les énonçons en une seule fois. Dans la
proposition ci-dessous, “lim” représente une des limites ci-dessus.

Proposition 8. Soient f, g telles que lim f et lim g existent. Alors :

1) lim(f ± g) = lim f ± lim g

2) lim(f · g) = (lim f) · (lim g)

3) si lim g ̸= 0, alors lim f
g
= lim f

lim g

4) si f(x) ⩽ g(x) dans un voisinage de x0, alors lim f ⩽ lim g

Preuve: (Suivre exactement les mêmes pas que dans la preuve des mêmes propriétés pour les suites.)

Les propriétés ci-dessus permettent de calculer des limites nouvelles à partir de limites déjà
connues, en évitant de devoir passer à chaque fois par la définition, “à la ε-δ”.
Exemple 7.19. Considérons un polynôme

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n =
n∑
k=0

akx
k .

Par les propriétés 1 et 2,

lim
x→x0

P (x) = lim
x→x0

n∑
k=0

akx
k

=
n∑
k=0

lim
x→x0

akx
k

=
n∑
k=0

ak lim
x→x0

xk

=
n∑
k=0

akx
k
0

= P (x0)

Dans l’avant-dernière ligne, on a encore utilisé la propriété 2, pour chaque k, comme suit. Puisque
limx→x0 x = x0 on a

lim
x→x0

xk = lim
x→x0

x · x · · · · x︸ ︷︷ ︸
k fois

=
(
lim
x→x0

x
)
·
(
lim
x→x0

x
)
· · ·
(
lim
x→x0

x
)

︸ ︷︷ ︸
k fois

= x0 · x0 · · ·x0︸ ︷︷ ︸
k fois

= x0
k .

⋄
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7.6 Quelques indéterminations “0
0”

Les limites les plus importantes (et les plus intéressantes aussi) sont les formes indéterminées,
celles de la forme “0

0
”, c’est-à-dire des limites de quotients de fonctions définies dans un voisinage

de x0,

lim
x→x0

f(x)

g(x)
, lim

x→x+0

f(x)

g(x)
, lim

x→x−0

f(x)

g(x)
,

où f et g tendent toutes les deux vers zéro.

Dans cette section on rappelle quelques méthodes classiques utiles pour lever ce genre d’indéter-
mination, en les illustrant sur des exemples standards. Il est clair que les techniques s’adaptent
pour les trois types de limites.

7.6.1 Polynômes et factorisation

Exemple 7.20. Considérons une limite d’un quotient de deux polynômes :

lim
x→1

x3 − 2x2 − 5x+ 6

x2 + 2x− 3
= lim

x→1

P (x)

M(x)

Par une propriété vue plus haut,

lim
x→1

P (x) = P (1) = 0, lim
x→1

M(x) =M(1) = 0 ,

et donc ce quotient mène à une indétermination de la forme “0
0
”. Mais comme on sait, le fait que

les P (1) = 0 etM(1) = 0 signifie que ces polynômes peuvent se factoriser par (x−1). En effectuant
deux divisions, on obtient

P (x) = x3 − 2x2 − 5x+ 6 = (x− 1)(x2 − x− 6) ,

M(x) = x2 + 2x− 3 = (x− 1)(x+ 3) ,

ce qui implique que le quotient considéré est en fait

P (x)

M(x)
=

XXXX(x− 1)(x2 − x− 6)
XXXX(x− 1)(x+ 3)

=
x2 − x− 6

x+ 3
=

P̃ (x)

M̃(x)

Et donc, puisque P̃ (1) = −6 et M̃(1) = 4 ̸= 0, la limite à calculer n’est plus indéterminée :

lim
x→1

P (x)

M(x)
= lim

x→1

P̃ (x)

M̃(x)
=

−6

4
= −3

2
.

⋄

7.6.2 La méthode du conjugué

La méthode du conjugué, que nous avons utilisée souvent dans l’étude des suites et des séries,
est aussi utile pour les limites de fonctions.
Exemple 7.21. Considérons la limite

lim
x→0

√
1 + x− 1

x
,
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dans laquelle le numérateur et le dénominateur tendent tous les deux vers zéro lorsque x→ 0. En
multipliant et divisant par le conjugué de la racine qui apparaît au numérateur,

√
1 + x− 1

x
=

√
1 + x− 1

x
·
√
1 + x+ 1√
1 + x+ 1

=
(
√
1 + x)2 − 12

x(
√
1 + x+ 1)

=
x

x(
√
1 + x+ 1)

=
1√

1 + x+ 1
.

On a donc

lim
x→0

√
1 + x− 1

x
= lim

x→0

1√
1 + x+ 1

=
1√

1 + 0 + 1
=

1

2
.

⋄

Remarquons que parfois, le conjugué est utile dans des limites qui n’impliquent pas forcément
des racines carrées (voir plus bas).

7.6.3 Limites de fonctions trigonométriques

Exemple 7.22. Montrons que

lim
x→0

sin(x)

x
= 1

D’abord, puisque f(x) := sin(x)
x

(définie sur R∗) est paire , il suffit de montrer que

lim
x→0+

sin(x)

x
= 1 .

Mais, par l’équivalence via les suites, cette dernière est équivalente à la validité, pour toute suite
xn > 0, xn → 0, de

lim
n→∞

sin(xn)

xn
= 1 .

Or cette propriété a déjà été démontrée dans le chapitre sur les suites. ⋄
Exemple 7.23. Montrons que

lim
x→0

1− cos(x)

x2
=

1

2
.

En multipliant et divisant par le conjugué de la différence 1− cos(x),

lim
x→0

1− cos(x)

x2
= lim

x→0

1− cos(x)

x2
· 1 + cos(x)

1 + cos(x)

= lim
x→0

1− cos(x)2

x2
· 1

1 + cos(x)

= lim
x→0

(sin(x)
x

)2
· 1

1 + cos(x)

= 12 · 1

1 + 1
=

1

2
.

⋄
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7.6.4 Limites de fonctions exp/log

Informel 7.24. Attention : Nous allons donner les valeurs de quelques limites impliquant des
exponentielles et des logarithmes. Or comme dit au tout début de ce cours, les fonctions ex et
log(x), qui sont réciproques l’une de l’autre, ainsi que leurs propriétés, sont supposées connues :
nous ne les avons pas introduites rigoureusement. Donc les preuves données ci-dessous ne sont
pas entièrement rigoureuses ; des résultats que nous présenterons plus tard viendront compléter
cette analyse.

Exemple 7.25. Montrons que

lim
x→0

log(1 + x)

x
= 1 .

Pour ce faire, nous allons calculer la limite le long de la suite xn = 1
n

, qui est > 0, et xn → 0. Pour
un n fixé, on peut écrire

log(1 + xn)

xn
= n log

(
1 +

1

n

)
= log

(
1 +

1

n

)n
Puisque (1 + 1

n
)n → e, on a

lim
n→∞

log(1 + xn)

xn
= lim

n→∞
log

(
1 +

1

n

)n
= log(e) = 1 .

⋄
Exemple 7.26. Montrons que

lim
x→0

ex − 1

x
= 1 .

Posons pour un instant y := ex − 1, c’est-à-dire x = log(1 + y). Lorsque x → 0, on a aussi y → 0,
donc la limite devient

lim
x→0

ex − 1

x
= lim

y→0

y

log(1 + y)
=

1

limy→0
log(1+y)

y

= 1 .

⋄

7.7 Limites infinies en un point

(ici, Video: v_fonctions_limite_infinie_x0_MAN.mp4)

Si aucune des limites
lim
x→x0

f(x) , lim
x→x−0

f(x) , lim
x→x+0

f(x)

n’existe au sens des définitions précédentes (c’est-à-dire que f(x) tend vers un L ∈ R bien défini),
alors un des scénarios possibles est que les valeurs de f(x) deviennent arbitrairement grandes à
l’approche de x0, avec un signe bien défini.
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7.7. Limites infinies en un point

Définition 7.27. Soit f définie dans un voisinage de x0.

Limite infinie lorsque x→ x0 :

⋆ lim
x→x0

f(x) = +∞ si et seulement si pour tout M > 0 il existe δ > 0 tel que f(x) ⩾ M dès que

0 < |x− x0| ⩽ δ.

⋆ lim
x→x0

f(x) = −∞ si et seulement si pour tout m < 0 il existe δ > 0 tel que f(x) ⩽ m dès que

0 < |x− x0| ⩽ δ

Limite infinie lorsque x→ x+0 :

⋆ lim
x→x+0

f(x) = +∞ si et seulement si pour tout M > 0 il existe δ > 0 tel que f(x) ⩾ M dès que

x0 < x ⩽ x0 + δ.

⋆ lim
x→x+0

f(x) = −∞ si et seulement si pour tout m < 0 il existe δ > 0 tel que f(x) ⩽ m dès que

x0 < x ⩽ x0 + δ.

Limite infinie lorsque x→ x−0 :

⋆ lim
x→x−0

f(x) = +∞ si et seulement si pour tout M > 0 il existe δ > 0 tel que f(x) ⩾ M dès que

x0 − δ ⩽ x < x0.

⋆ lim
x→x−0

f(x) = −∞ si et seulement si pour tout m < 0 il existe δ > 0 tel que f(x) ⩽ m dès que

x0 − δ ⩽ x < x0.

Exemple 7.28. Soit f(x) = 1
x2

, au voisinage de x = 0. Montrons que

lim
x→0

f(x) = +∞ ,

au sens de la définition ci-dessus. En effet, fixons un seuil M > 0, et montrons que f(x) ⩾M pour
tout x suffisamment proche de 0.
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On remarque que pour un M > 0 fixé (grand),

f(x) ⩾M ⇔ 1

x2
⩾M ⇔ x2 ⩽

1

M
⇔ |x| ⩽ 1√

M
.

Définissons donc δ := 1√
M

. Comme conséquence de ce qui précède, en prenant un x tel que 0 <

|x| ⩽ δ, on garantit que f(x) ⩾M . ⋄

Exemple 7.29. Considérons ensuite f(x) = 1
x

au voisinage de x = 0. Dans ce cas on peut obtenir
des limites infinies seulement au sens latéral :

lim
x→0+

1

x
= +∞ , lim

x→0−

1

x
= −∞ .

⋄

Exemple 7.30. Pour f(x) = loga(x), dont le domaine est R∗
+,

lim
x→0+

loga(x) =

{
−∞ si a > 1 ,

+∞ si 0 < a < 1 .
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⋄

7.7.1 Propriétés des limites infinies en un point

Comme on sait depuis le chapitre sur les suites, les limites infinies ne se manipulent pas comme
leurs analogues finies.

La résultat suivant est l’exact analogue de la proposition donnée pour les suites qui tendent vers
l’infini. On ne les formule que dans le cas de la limite x → x0. On laisse au lecteur le soin de
formuler les propriétés analogues pour les limites latérales x→ x±0 .

Proposition 9. Soient f, g définies dans un voisinage épointé de x0, et où f est telle que limx→x0 f(x) =
+∞. Alors

1) limx→x0
1

f(x)
= 0.

2) Si limx→x0 g(x) = +∞, alors

lim
x→x0

(f(x) + g(x)) = +∞ , et lim
x→x0

f(x)g(x) = +∞ .

3) Si g est bornée dans un voisinage épointé de x0, alors

lim
x→x0

(f(x) + g(x)) = +∞ , et lim
x→x0

g(x)

f(x)
= 0 .

4) Si limx→x0 g(x) = L ̸= 0, alors

lim
x→x0

f(x)g(x) =

{
+∞ si L > 0,

−∞ si L < 0 .

5) Si il existe δ > 0 tel que g(x) ⩾ δ dans un voisinage épointé de x0, alors limx→x0 f(x)g(x) = +∞.

6) Si g(x) ⩾ f(x) pour tout x dans un voisinage épointé de x0, alors limx→x0 g(x) = +∞.
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Exemple 7.31. Parfois, on peut devoir faire une factorisation avant d’utiliser les propriétés ci-
dessus :

lim
x→−1+

x2 − 1

x2 + 2x+ 1
= lim

x→−1+

(x− 1)(x+ 1)

(x+ 1)2

= lim
x→−1+

(x− 1)︸ ︷︷ ︸
→−2̸=0

1

x+ 1︸ ︷︷ ︸
→+∞

= −∞ .

⋄

7.8 Limites x→ ±∞

Dans cette section, on étudie le comportement des fonctions loin de l’origine, en considérant des
limites où x→ ±∞.

Comme la problématique est essentiellement la même que celle introduite dans l’étude des suites
(an) et de leurs limites lorsque n → ∞, on se contentera de donner les définitions, calquées sur
celles du chapitre sur les suites, et de donner quelques exemples.

7.8.1 Limites finies

Définition 7.32. 1) Soit f dont le domaine contient un intervalle de la forme ]a,+∞[. Alors
lim

x→+∞
f(x) = L si pour tout ε > 0 il existe N > 0 tel que |f(x)− L| ⩽ ε dès que x ⩾ N .

2) Soit f dont le domaine contient un intervalle de la forme ] − ∞, b[. Alors lim
x→−∞

f(x) = L si

pour tout ε > 0 il existe N < 0 tel que |f(x)− L| ⩽ ε dès que x ⩽ N .

On pourra utiliser sans autre toutes les propriétés listées dans la leçon sur les limites de suites,
ainsi que les techniques pour étudier ces limites (extraire le terme dominant, conjugué, etc.).

7.8.2 Limites infinies

Définition 7.33. 1) Soit f une fonction dont le domaine contient un intervalle de la forme
]a,+∞[.

⋆ lim
x→+∞

f(x) = +∞ si et seulement si pour tout M > 0 il existe N > 0 tel que f(x) ⩾ M

dès que x ⩾ N .

⋆ lim
x→+∞

f(x) = −∞ si et seulement si pour tout m < 0 il existe N > 0 tel que f(x) ⩽ m

dès que x ⩾ N .

2) Soit f une fonction dont le domaine contient un intervalle de la forme ]−∞, b[.

⋆ lim
x→−∞

f(x) = +∞ si et seulement si pour tout M > 0 il existe N < 0 tel que f(x) ⩾ M

dès que x ⩽ N .

⋆ lim
x→−∞

f(x) = −∞ si et seulement si pour tout m < 0 il existe N < 0 tel que f(x) ⩽ m

dès que x ⩽ N .

Exemple 7.34. Considérons le comportement des fonctions polynomiales f(x) = xp, où p ∈ Z∗. Si
p est négatif, alors

lim
x→±∞

xp = 0 .
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Par contre si p est positif, alors
lim

x→+∞
xp = +∞ ,

et

lim
x→−∞

xp =

{
+∞ si p est pair ,
−∞ si p est impair .

⋄
Exemple 7.35. Exponentielle de base a > 0 (a ̸= 1) :

lim
x→−∞

ax =

{
+∞ si 0 < a < 1 ,

0 si a > 1 .

lim
x→+∞

ax =

{
0 si 0 < a < 1 ,

+∞ si a > 1 .
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⋄
Remarque 7.36. Le fait qu’ici on considère une fonction f de la variable réelle x, à l’inverse des
suites dont la “variable” est un entier n, fait que certains outils nouveaux feront leur apparition,
comme la règle de Bernoulli-l’Hôpital (voir chapitre sur la dérivation).
Nous reviendrons par exemple sur les limites qui caractérisent la vitesse avec laquelle certaines
fonctions fondamentales tendent vers l’infini, comme

lim
x→∞

(loga(x))
p

xα
= 0 , p, α > 0 .

⋄
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