Chapitre 7

Limites de fonctions

7.1 Introduction

Nous avons rencontré la notion de limite lorsque nous avons étudié les suites de réels.
Nous allons maintenant introduire diverses notions de limites, associées a une fonction réelle f
d’une variable réelle z. Nous étudierons donc la dépendance
v ()
et ceci dans deux situations particulieres :

* Lorsque x est au voisinage d’un point x, € R, nous définirons d’abord la limite

lim f(z),

Tr—T0

ainsi que les limites latérales

lim f(x), lim_ f(z).

T T
* Lorsque x est au voisinage de I'infini, a savoir trés grand, nous définirons les limites

fm_f(@), lim_ ().

T——00

Ce deuxieme cas sera essentiellement le méme que pour les suites, lim,,_,, a,, et ne présen-
tera aucune difficulté réellement nouvelle.

Comme les propriétés satisfaites par ces limites seront essentiellement les mémes que pour les
suites, nous ne donnerons pas toutes les preuves, qui pourront étre faites en exercice.

7.2 Limite z — xg

Commencgons par étudier les valeurs d"une fonction f proche d"un point z,, avec la définition de
base de la limite en x. Le point xy pourra étre un point intérieur du domaine de la fonction, ou
alors sur son bord.

Il y a trop de comportements possibles pour f(z) lorsque x s’approche de x,, donc dans notre
analyse, on se concentrera sur les comportements classiques observés dans nombre de fonctions
rencontrées en analyse, et qui sont les plus rencontrés dans le développement de la théorie des
fonctions. En particulier, on donnera un sens aux termes suivants :

* f(x) tend vers L € R lorsque z tend vers x
* f(x) tend vers l'infini lorsque x tend vers xg
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7.2. Limite x — x

7.2.1 Notion de voisinage

Informel 7.1. Pour définir la “limite de f(x) en z,”, nous allons étudier les valeurs de f(x) lorsque
x devient arbitrairement proche de x,. Et c’est la formulation rigoureuse de cette notion qui pose
souvent des difficultés.

Pour parler des réels z proches de z, on utilisera la notion de voisinage.

Définition 7.2. Soit z; € R.
*x L'ensemble V = |zg — o, zo[U]zo, xo + o, olt @ > 0, est appelé voisinage épointé de .

* Une fonction f est définie au voisinage de z si il existe un voisinage épointé de z, V, tel
que f(z) est définie pour tout x € V.

Exemple 7.3. Aucune des fonctions

1 :
f@)=— fle)=loglz|  f(z)=sin(z5)
n’est définie en 0, mais toutes sont bien définies dans un voisinage épointé de 0. o

Par définition, un voisinage épointé de z, contient une infinité de points distincts de z,. Mais
surtout : quelle que soit la distance § > 0 qu’on choisit, aussi petite que I'on veut, il contient des
points x dont la distance a x, est inférieure ou égale a ¢ :

0<|z—mx <9.

7.2.2 Limite en un point

Un premier cas naturel a considérer est celui dans lequel les valeurs de f(z) tendent a se rappro-
cher d'un nombre, que I’on notera généralement L, a mesure que x se rapproche de .

Définition 7.4. Soit xy € R et f une fonction définie dans un voisinage épointé de z,. On dit que
f tend vers L € R lorsque = tend vers z si pour tout ¢ > 0 il existe 0 > 0 tel que |f(z) — L| < ¢
des que 0 < |z — xo| < 9.

Le réel L sera appelé la limite, et on utilisera la notation :

lim f(x)= L.

T—T0

Remarque 7.5.  x Dans cette définition, on peut prendre ¢ > 0 arbitrairement petit, et le nombre
d > 0 doit en général étre pris en fonction de e.

* Il est important de remarquer que I'étude de lim,_,,, f(z) est indépendante de la valeur que
f prend en z,. En fait, f n’a méme pas besoin d’étre définie en z, pour que sa limite existe!
o

Sur I’animation ci-dessous, choisir quelques valeurs de ¢ > 0, et adapter § > 0 de facon a ce que

|f(z) —L| <e desque 0<|z—uaxo <.
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Pe

e = 0.800

flz) o

4 = 1.000

ra
LJ

Exemple 7.6. Considérons une fonction f : R\ {2} — R, telle que

flz) = —— Vo # 2.

Etudions cette fonction dans un voisinage épointé de x, = 2. Cela signifie que I’on ne s’intéresse
qu’aux valeurs de f(x) pour des réels x proches de 2, différents de 2.

A premiere vue, si x est proche de 2 alors = — 1 est proche de 1, et donc f(z) devrait étre proche
de 1. On peut donc conjecturer que

; 1
lim f(z) = 5.
Pour commencer, étudions la différence
T N T
)= 4= =g | = [ = -

Cette expression montre de fagon assez transparente que f(z) est proche de £ lorsque z est proche
de 2, et permet maintenant d'implémenter la définition de limite.

Fixons € > 0. Par l'identité écrite plus haut, on a

si et seulement si
1
§|ZL’ - 2| S€,
c’est a dire
|z — 2| < 2¢.
Ainsi, si on définit § := 2¢, on a bien | f(z) — 3| < £ des que 0 < |z — 2| < 4. Ceci montre ce qu’on

voulait :
lim f(z) = 1.

r—2

Sur 'animation ci-dessous, choisir la valeur de ¢, et voir comment adapter § pour garantir que
tout z € [2 — 6,2 + 6] ait son image f(z) € [5 — &, 5 +¢] :
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7.2. Limite x — x

voisinages
§=0.900...
On observe que § = 2¢ est le “meilleur” § possible .
Pour un autre exemple élémentaire traité en détails, cliquer ici (blackpenredpen) (lien web). ¢

Informel 7.7. La fonction de 'exemple précédent a cela de particulier qu’elle a permis d’écrire
une proportionnalité exacte entre | f(z) — 1| et |z — 2|,

f(z) — 3l =3le -2,

ce qui a permis de facilement trouver un 4 en fonction de «.
IIn’y a que les fonctions du type f(x) = az + b pour lesquelles cette proportionnalité est explicite,
c’est-a-dire pour lesquelles on peut toujours écrire quelque chose comme (pour un L bien choisi)

|f(z) = L] = Clz — x|,

ou C' est une constante qui ne dépend pas de z.
Si on ne peut pas faire de méme dans un cas général, on pourra quand-méme essayer de majorer
la différence | f(z) — L| comme suit :

|[f(z) = L] < Clz — xol ,

ce qui permet également de trouver un § en fonction de ¢.

Exemple 7.8. Considérons
3

i 2
flx):=<2x+5 stz #2,
V2 sivr=2,

et montrons que
) 1
i f(x) = 3
Commencgons par écrire la différence. Lorsque = # 2,

3 1’_2|x—2|
20 +5 31 3|22 +5]°

@) =31 =|

De par la présence de “|z — 2| au numérateur, cette expression exprime bien que |f(z) — 3| sera
proche de zéro lorsque z sera proche de 2. Mais pour rendre I'argument rigoureux il faut d’abord
faire quelque chose pour ne plus avoir de “z” au dénominateur de la fraction. Nous allons donc
travailler pour minorer le dénominateur par une quantité strictement positive, qui ne dépend pas

de z.

Si on suppose par exemple que z est a distance au plus 1 de 2, |z —2| < 1 (c’est-a-dire —1 < 2 —2 <
1), alors on peut écrire que

20+5=2(r—-2+2)+5=2(x—-2)+9>2(-1)+9=7,
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qui implique en particulier que

2
= —lzr—2|.
21

Dorénavant, nous supposerons donc que |z — 2| < 1. Maintenant, fixons un € > 0. L'inégalité que
nous avons obtenue au-dessus dit que pour rendre | f(z) — 3| plus petit que ¢, il suffit de d’abord
rendre 2 |z — 2| plus petit que e. Or

2 21
—lr—2|<e¢ = |m—2|<?5.

alors 0 < |z — 2| < 0 implique | f(z) — 3| <e. o
Exemple 7.9. Considérons

flz)=ea7
qui est bien définie partout, sauf en x = 0. Montrons que

lim f(z) =0.

z—0

Fixons donc un ¢ > 0, et montrons que 1’on peut trouver un § > 0 tel que

e <e ¥V 0<|z[ <.

w""

Pour cela, on remarque d’abord que, 1’exponentielle étant toujours strictement positive, e =2 | =
1 1
e »2. Or on peut résoudre l'inégalité ¢ =2 < ¢ explicitement. D’abord, en prenant le log(-) (qui est
une fonction croissante) des deux cotés de I'inégalité, et en changeant le sens de I'inégalité :
1
— = —log(e).
Cette derniere est toujours vraie si ¢ > 1; dans ce cas on peut donc prendre n’importe quel 9,
par exemple § = 2. Ensuite, considérons le cas o1 0 < ¢ < 1. Dans ce cas, log(e) < 0, et donc
—log(e) = |log(e)|. On a donc montré que

1

|f(z)] <e sietseulementsi [z|<—nx=.
| log(e)]

On peut donc conclure en prenant
1

VIlog(e)]

On voit, par ce calcul, que plus € > 0 est choisi petit, plus x doit étre pris proche de 0 pour que
[f@)] <e °

7.2.3 Premiéres propriétés de la limite

Lemme 20. Si la limite existe, elle est unique. Plus précisément : si il existe deux nombres Ly, L, € R tels
que
lim f(z) = L, lim f(z) = Lo,

Tr—xQ Tr—T0

alors Ly = L;.
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Preuve: (La preuve suit exactement ce qu’on a fait pour les suites!)

Supposons, par I'absurde, que f tende vers deux limites différentes, L; # L. Sans perte de généralité, on
peut supposer que L < Ly. Définissons

Lo — 1y

===
qui est strictement positif par hypothése. Aussi, Ly — L1 > «.

* Par définition de L, il existe 0; > 0 tel que |f(x) — L1| < edes que 0 < |z — o 1
|

< | <6
<edesque0 < |z — x| < 0

* Par définition de Ly, il existe do > 0 tel que |f(x) — Lo 9.

Définissons maintenant
= min{él, 52} .

Considérons alors un z tel que 0 < |z — z¢| < 0. Comme § < 1, ona que |f(x) — L1| < €. Et, comme § < Jy,
onaque |f(x) — L2| < e. On a dong, par I'inégalité triangulaire, que

|L1 — Lo| = |(L1 — f(x)) = (L2 — f(x))]
< 1Ly = @) + |2 — @) < 2 = 2|14 L,

ce qui est absurde 0O

Le résultat suivant offre une caractérisation alternative de la limite en un point, en établissant
un lien avec la notion de limite introduite précédemment pour le suites de réels. (En fait, cer-
tains textes/enseignant.e.s utilisent cette caractérisation pour définir la limite d"une fonction en
un point.)

Lemme 21. (Critere d’existence via les suites) Soit f définie au voisinage de x(. Alors

)=
si et seulement si pour toute suite (ay,),, satisfaisant a,, # xo pour tout n et a,, — xq lorsque n — oo, on a
que

lim f(a,)=L.

n—o0

Preuve: =: Supposons que lim,_,, f(z) = L. Prenons une suite (ay,), telle que a,, # x¢ pour tout n, et
telle que a,, — xo. Fixons € > 0. Par la définition de limite, il existe > 0 tel que |f(z) — L| < e dés que
0 < |z — zg| < 0. Puisque a,, — z, il existe un entier N tel que |a,, — zo| < 6, et donc |f(a,) — L| < ¢, ceci
pour tout n > N. Ceci montre que f(a,) — L.

<: Supposons maintenant que f(a,,) — L pour toute suite a,, — x¢. Par 'absurde, supposons que f(z) ne
tend pas vers L lorsque z tend vers . Cela signifie qu’il existe ¢, > 0 pour lequel il n’existe aucun ¢ > 0 tel

que |f(z) — L| < &, dés que 0 < |z — x| < 6. Considérons alors la suite 6, = 2 et pour tout n, considérons
un z,, tel que 0 < |z, — zg| < 0y, et |f(x,) — L| > &4. On a donc une suite (z,,) telle que x,, — x(, mais pour
laquelle f(z,) ne tend pas vers L, une contradiction. O

Ce critere est en général utilisé pour montrer qu'une fonction f n’a pas de limite lorsque x — .
Pour ce faire, on pourra soit trouver une suite x,, — z, pour laquelle lim,,_,, f(z,) n’existe pas,
ou alors trouver deux suites x, — o, Yy, — 7o telles que les suites f(z,) et f(y,) possedent des
limites différentes lorsque n — oo :

Tim f(z,) 7 lim f(yn)

Exemple 7.10. Montrons que la fonction f(z) = sin(+) n’a pas de limite lorsque # — 0. Pour ce
faire, considérons deux suites qui tendent vers zéro.
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7.3. Le théoréme des deux gendarmes

» Pour la premiere, prenons z,, = ﬁ, pour laquelle
flx,) = sin(%) =sin(§ +2mn) =1 Vn

. o 1
% Pour la deuxiéme, prenons y,, = T g0, POUT laquelle

f(yn) =sin(-L) =sin(3 +27mn) = -1  Vn

Yn
On a donc z, — 0 et y,, — 0, mais
lim f(x,) # lim f(y,).
n—oo n—oo

Le théoreme ci-dessus implique donc que la limite lim,_,o f(x) n’existe pas. o

7.3 Le théoreme des deux gendarmes

Le résultat suivant est ’analogue de celui vu précédemment pour les suites; il est utile pour
calculer une limite x — z, en comparant f(z), proche de z,, a deux fonctions plus simples dont
on sait calculer les limites. On formule le résultat pour la limite  — xz,, mais il peut aussi se
formuler pour les limites latérales (section suivante).

Théoréme 7.11. (Théoreme des deux gendarmes) Soit f définie sur un voisinage V' épointé de x,. Soient
g, h, également définies sur V, telles que

1) g(x) < f(z) < h(x) pour tout x € V,
2) lim g(z) = lim h(z) = L.
T—TQ T—TQ
Alors la limite de f lorsque x tend vers x existe et vaut L :

lim f(x)=1L.

T—rT0
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7.3. Le théoréme des deux gendarmes

Preuve: Fixons ¢ > 0.
* Puisque lim,_, g(z) = L, il existe un ¢; > 0 tel que |g(z) — L| < e dés que 0 < |z — x| < 0.
— < Oa.

Posons ¢ := min{dy, J2}. Si x est tel que 0 < |z — x¢| < 0, on a donc a la fois |g(z) — L| < eet |h(z) — L| < e,
ce qui donne

<
* Puisque lim,_,,, h(z) = L, il existe un d2 > 0 tel que |h(x) — L| < e dés que 0 < |z — x|

mais aussi

Etdonc |f(z) — L| < e. O

Exemple 7.12. Considérons la fonction

) 1
f([l'f)—|l"Sl (\/%) ’

bien définie dans un voisinage épointé de x(, = 0. Pour calculer sa limite lorsque z — 0, on peut
remarquer que —1 <sin(---) < +1, et donc pour tout = # 0,

—|z| < f(z) < 2]
~—— ~
—g(x) —h(a)

Comme lim,_,( g(z) = lim,_,o h(z) = 0, le théoréme des deux gendarmes implique que lim,_,o f(x) =
0. o
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7.4 Limites latérales v — z7

On parle alors de limite latérale si les valeurs d'une fonction tendent vers une valeur lorsqu’on
s’approche d’un point x( en maintenant le signe de  — z, constant :

Définition 7.13. Soit z; € R.

* Soit f une fonction définie sur un intervalle de la forme |z, 29 + af (@ > 0). On dit que f
tend vers L € R lorsque z tend vers z, par la droite si pour tout ¢ > 0 il existe > 0 tel que
|f(z) — L| <edesque 0 < x — xy < 0, c'est-a-dire zy < x < x¢ + J. On notera :

lim f(z)=1L.
r—zd

* Soit f une fonction définie sur un intervalle de la forme |2y — a, o[ (@ > 0). On dit que f
tend vers L € R lorsque x tend vers z, par la gauche si pour tout ¢ > 0 il existe 6 > 0 tel
que |f(z) — L| < edes que —d < & — xy < 0, c’est-a-dire zy — 0 < = < zy. On notera :

lim f(x)=1L.

JL’HIO

Donc une fonction peut par exemple posséder une limite latérale a droite en x, sans étre du tout
définie a gauche de z :

23]

\NA
N

X, +— X

e sa S ssessssnd Bumm e

Exemple 7.14. Par exemple, f(z) = \/x est définie seulement sur R, = [0, +oo], et

lim f(x)=0.

x—0t+

e £0x)

o X

En effet, pour tout e > 0, 0on a |f(z)| = \/z < ¢ si et seulement si x < £2, et donc on peut prendre
§ =gl o

Mais une fonction peut étre définie de part et d’autre de z, et n’avoir qu’une seule limite latérale :
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7.4. Limites latérales x — z7

Exemple 7.15. Considérons, sur R*, la fonction

1—22 siz <0,
flz):=<= sizx =0,
sin(1/z) siz>0.
Alors f n’a pas de limite a droite en zy = 0, comme on sait, mais
lim f(z)=1.
z—0~

o

Intuitivement, si les limites latérales en un point existent et sont égales, alors la vraie limite en ce
point existe et prend la méme valeur :

Théoréme 7.16. Soit f définie dans un voisinage épointé de x. Les deux affirmations ci-dessous sont
équivalentes :
1) lim f(x)=1L

T—TQ

2) 1im+ f(x)= lim f(x)=1L

(I)—)(EO I—):DO

Preuve:
1) Supposons que lim, ., f(x) = L, c’est-a-dire que pour tout ¢ > 0 il existe un 6 > 0 tel que |f(z) —
Ll <edesquel < |z —x9| <0.0r0 <z —29 < det—0 <z —xp <0 impliquent évidemment
0 < |z — xo| < 4. Etdonc limx%xg flz) = limzﬁmg flx)=1L

2) Maintenant, supposons que lim_ o f(z) = lim, g f(z) = L, et fixons ¢ > 0. On a d’une part
I'existence d'un 6_ > 0 tel que |f(z) — L| < e dés que —6_ < = — z¢ < 0, et d’autre part 'existence
d'un d; > O0tel que |f(z) — L| < edésque0 < z —xp < 6. En prenant § := min{d_, § }, on garantit
quesi0 < |z —xg| < J,alors =0 <z —2p < 0et0 < z —zp < 04, et donc dans tous les cas,
@) — LI <.

O

Il existe naturellement une version latérale du Théoreme des deux gendarmes, ou du théoreme
sur I"équivalence avec les limites par des sous-suites, dans le cas des limites latérales.

f@) =2 H ,

X

Exemple 7.17. Considérons

qui est bien définie en tout x # 0. Pour calculer sa limite lorsque # — 0, commencons par rappeler
que par la définition de valeur entiere,

1 1 1
e H e

On utilise cette double inégalité pour étudier les limites latérales en zéro :
* Si on la multiplie des deux cotés par = > 0,

1 1
:C(——1><f(x)<x-—, Vo > 0.
x x
——
=1—z =1
Puisque lim, ,o+(1 — z) = 1, le Théoréeme des deux gendarmes (en version “latérale”) im-
plique que
lim f(z)=1.

z—0t
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* Si on la multiplie des deux cotés par z < 0,

1 1
x(——1>>f(x)>x-—, Vr <0.
J,_/ \ﬁ

=l-z =1

Puisque lim,_,o- (1 — z) = 1, le Théoreme des deux gendarmes (en version “latérale”) im-
plique que
lim f(z)=1.

z—0~

Puisque les limites larérales existent et sont égales,

lim f(z) =1.

x—0

\

draw | clear plot

Be

o
Le théoreme précédent est aussi utile pour montrer qu'une limite x — z, n’existe pas. Pour ce
faire, on pourra

* montrer qu'une des limites latérales, x — z§ ou z — x,, n’existe pas, ou

x montrer que les limites latérales © — z§ etz — x,, existent mais ont des valeurs différentes.

Exemple 7.18. Considérons
B |22 — 1|

r—1

/()

et montrons que la limite lirq f(z) n’existe pas.
T—

)

D’abord, remarquons que |2 — 1| = |z —1|- |z +1]|. Ensuite, si z est proche de 1, alors [z + 1] = z+1,
mais
—-1) siz>1
TS A
—(x—1) siz<l.

On peut donc facilement calculer les limites latérales :

—(x—1 1
lim f(z) = lim (z=D(x+1) = lim —(z+1)=-2,
r—1- =17 rz—1 r—1~
: o (le=D(z+1) B

Comme les limites latérales existent mais sont inégales, on conclut que f(z) n’a pas de limite
lorsque z — 1. o

138 NumChap: chap-limites-de-fonctions, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)


botafogo.saitis.net

7.5. Propriétés de la limite

7.5 Propriétés de la limite

Nous avons vu pour l'instant trois notions de limites en un point z :

lim | lim | lim
T—%Z0 x—mﬁg Tz

Or ces limites obéissent a des propriétés standards qui sont semblables a celles des suites. Plutot
que de les répéter séparément pour chaque notion, nous les énongons en une seule fois. Dans la
proposition ci-dessous, “lim” représente une des limites ci-dessus.

Proposition 8. Soient f, g telles que lim f et lim g existent. Alors :
1) lim(f+g)=1limf+limg

2) lim(f - g) = (lim f) - (lim g)
3) silimg # 0, alors limg — B i

" limg

4) si f(x) < g(x) dans un voisinage de x, alors lim f < lim g

Preuve: (Suivre exactement les mémes pas que dans la preuve des mémes propriétés pour les suites.) [

Les propriétés ci-dessus permettent de calculer des limites nouvelles a partir de limites déja
connues, en évitant de devoir passer a chaque fois par la définition, “a la e-6”.

Exemple 7.19. Considérons un polyndme
n
P(z) = ap + a1z + apa® + - - - + apa” = Zakx’“.
k=0
Par les propriétés 1 et 2,
n
lim P(x) = lim Zakxk
T—T0 T—T0
k=0
n
= Z lim agz”®
T—T0
k=0
n
= Z ap lim z*
T—IQ
k=0

Yt
k=0
= P(x0)

Dans l’avant-derniere ligne, on a encore utilisé la propriété 2, pour chaque k, comme suit. Puisque
lim, ., * = zpona

limz¥=lmz-2- -2
T—T0 Tz S—
k fois
= (lim m) . (lim x)---(lim x)
Tr—T0 Tr—TQ T—T0
N TV
k fois

:xo.xo...xozxok_
R e

k fois
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7.6 Quelques indéterminations “3”

Les limites les plus importantes (et les plus intéressantes aussi) sont les formes indéterminées,
celles de la forme “2”, c’est-a-dire des limites de quotients de fonctions définies dans un voisinage

0
de Zo,
lim _f(x) , lim _f(x) , lim _f(x) ,
z—zo () et () v—ay 9(2)
ou f et g tendent toutes les deux vers zéro.

Dans cette section on rappelle quelques méthodes classiques utiles pour lever ce genre d’indéter-
mination, en les illustrant sur des exemples standards. Il est clair que les techniques s’adaptent
pour les trois types de limites.

7.6.1 Polyndmes et factorisation

Exemple 7.20. Considérons une limite d"un quotient de deux polynomes :

3 —21? —5r+6 " P(x)
im = lim
z—1 2+ 2 —3 z—1 M (:1:)

Par une propriété vue plus haut,

lim P(x) = P(1) =0, lim M (z) = M(1) =0,

r—1 r—1

et donc ce quotient mene & une indétermination de la forme “3”. Mais comme on sait, le fait que
les P(1) = 0 et M(1) = 0 signifie que ces polyndmes peuvent se factoriser par (z—1). En effectuant
deux divisions, on obtient

P(z)=2"—22> - 52+ 6= (v — 1)(2* —x — 6),
M(z) =2*+22—3=(z—1)(x +3),

ce qui implique que le quotient considéré est en fait

P(z) T@—@*—2—-6) 12°—2—-6 P(x)

M(z)  T—(@+3)  z+3 M)

Et donc, puisque P(1) = —6 et M(1) = 4 # 0, la limite a calculer n’est plus indéterminée :

limM:lim ~ = — = ——,

7.6.2 La méthode du conjugué

La méthode du conjugué, que nous avons utilisée souvent dans 1'étude des suites et des séries,
est aussi utile pour les limites de fonctions.

Exemple 7.21. Considérons la limite

DoV —1
lim — |
z—0 x
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dans laquelle le numérateur et le dénominateur tendent tous les deux vers zéro lorsque x — 0. En
multipliant et divisant par le conjugué de la racine qui apparait au numérateur,

Vitrz—1 Ji+z—-1 VI+z+1
x N x itz +l
(V1+x)*—12
r(vV1+z+1)

A

z(V1I+az+1)
1
Vitzr+1

On a donc
. Vi+ax—1 ) 1 1 1
lim ——— = lim = = _,
z—0 x z—=0 /1 +2x2+1 vV1+0+1 2

o

Remarquons que parfois, le conjugué est utile dans des limites qui n'impliquent pas forcément
des racines carrées (voir plus bas).

7.6.3 Limites de fonctions trigonométriques

Exemple 7.22. Montrons que

lim sin(x)

x—0 x

=1

D’abord, puisque f(z) := % (définie sur R*) est paire , il suffit de montrer que

sin(z)

lim =1.

z—0t T
Mais, par 1'équivalence via les suites, cette derniére est équivalente a la validité, pour toute suite
x, > 0,2, —0,de
sin(z,,)

lim =1.
n—o00 Tn
Or cette propriété a déja été démontrée dans le chapitre sur les suites. o
Exemple 7.23. Montrons que
1-— 1
lim 1= cos(z) _ =.
z—0 z2 2

En multipliant et divisant par le conjugué de la différence 1 — cos(z),

lim 1 — cos(x) — im 1 —cos(z) 1+ cos(z)
=0 a2 z=0 12 1+ cos(z)
— lim 1 —cos(x)? 1
20 x? 1 + cos(x)
. /sin(z)\2 1
= hm< ) .
250\ T 1 4 cos(x)
=12. L = 1
1+1 2
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7.6.4 Limites de fonctions exp/log

Informel 7.24. Attention : Nous allons donner les valeurs de quelques limites impliquant des
exponentielles et des logarithmes. Or comme dit au tout début de ce cours, les fonctions e” et
log(z), qui sont réciproques 1'une de 'autre, ainsi que leurs propriétés, sont supposées connues :
nous ne les avons pas introduites rigoureusement. Donc les preuves données ci-dessous ne sont
pas entiérement rigoureuses; des résultats que nous présenterons plus tard viendront compléter
cette analyse.

Exemple 7.25. Montrons que

lim log(1 + z)
x—0 x

=1.

Pour ce faire, nous allons calculer la limite le long de la suite z,, = %, qui est > 0, et z,, — 0. Pour
un n fixé, on peut écrire

1 1 1 1\"
M:nlog(H_):log(H_)
n n

T

Puisque (1 + 1)" — ¢,ona

1 1 1\"
lim 2802 e (H_) ~ log(e) = 1.
n

n—00 Ty n—o00

Exemple 7.26. Montrons que

v —1
lim6 =1.
z—0 X

Posons pour un instant y := e” — 1, c’est-a-dire = = log(1 + y). Lorsque x — 0, on a aussi y — 0,
donc la limite devient

et =1 ) Y 1
lim =

= 111m =
z—=0 T y—0 lOg(l + y) hmyao 10%(11!4-31)

=1.

7.7 Limites infinies en un point

(ici, Video: v_fonctions_limite_infinie_ x0_MAN.mp4)

Si aucune des limites

lim f(x), lim f(x), lim+ f(x)

%0 Tz T,

n’existe au sens des définitions précédentes (c’est-a-dire que f(x) tend vers un L € R bien défini),
alors un des scénarios possibles est que les valeurs de f(x) deviennent arbitrairement grandes a
I'approche de z,, avec un signe bien défini.
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Définition 7.27. Soit f définie dans un voisinage de z.
Limite infinie lorsque ©z — x :

x lim f(x) = 400 si et seulement si pour tout M > 0 il existe & > 0 tel que f(x) > M des que

T—x0

0 < |z — o] <.

* lim f(z) = —oo si et seulement si pour tout m < 0 il existe § > 0 tel que f(z) < m dés que
Tr—x0

0<|z—x0| <96
Limite infinie lorsque z — z :
* 1_i)m+ f(z) = 400 si et seulement si pour tout M > 0 il existe § > 0 tel que f(x) > M des que
;0 92 x < xg+ 0.

*x lim f(x) = —oo si et seulement si pour tout m < 0 il existe § > 0 tel que f(z) < m dés que

ay

To < < xo+0.
Limite infinie lorsque z — z; :

x lim f(x) = +oo0 si et seulement si pour tout M > 0 il existe § > 0 tel que f(z) > M des que
;Zx—o 0 <z < xp.

x lim f(x) = —oo si et seulement si pour tout m < 0 il existe § > 0 tel que f(x) < m des que
;Zm—o 0 <z <z

F(x) =|(1+0.3*sin(1/(x*x+0.01)))/x

(z, f(z))

Exemple 7.28. Soit f(z) = -, au voisinage de = = 0. Montrons que

lim f(z) = 400,

z—0

au sens de la définition ci-dessus. En effet, fixons un seuil M > 0, et montrons que f(z) > M pour
tout = suffisamment proche de 0.
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foo)
Y ——
-§ o +§ '
On remarque que pour un M > 0 fixé (grand),
fey=M <& Lo o 2<2 <:>||<1
x) =z 2 = HAESS M HARSS \/M

Définissons donc § := \/LM Comme conséquence de ce qui précéde, en prenant un z tel que 0 <
|z| < J, on garantit que f(x) > M. o

Exemple 7.29. Considérons ensuite f(z) = < au voisinage de # = 0. Dans ce cas on peut obtenir
des limites infinies seulement au sens latéral :

1 1

lim — = 400, lim — = —.
z—0+t X z—0- T
1
— @
T
L 2
T

Exemple 7.30. Pour f(z) = log,(z), dont le domaine est R,

—o00 sia>1,
+o00 si0<a<l.

z—07F

lim log,(x) = {

144
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a=2.000...

log,(z) e

8 e

rA
LJ

7.7.1 Propriétés des limites infinies en un point

Comme on sait depuis le chapitre sur les suites, les limites infinies ne se manipulent pas comme
leurs analogues finies.

La résultat suivant est I'exact analogue de la proposition donnée pour les suites qui tendent vers
I'infini. On ne les formule que dans le cas de la limite + — z,. On laisse au lecteur le soin de
formuler les propriétés analogues pour les limites latérales = — z7 .

Proposition 9. Soient f, g définies dans un voisinage épointé de x, et oir f est telle que lim,_,,, f(z) =
+o00. Alors

1) lim, g, ﬁ = 0.

2) Silim,_,,, g(x) = 400, alors

lim (f(z) + g(z)) = 400, et lim f(z)g(zx) = +o0.

T—T0 T—rT0

3) Si g est bornée dans un voisinage épointé de x, alors

lim M:O.

gclggo(f(:c) +9(2)) = oo, et zoao f(2)

4) Silim, ,,, g(x) = L # 0, alors

Jim f(2)g(z) =

+oo siL >0,
- siL<O0.

5) Siil existe 6 > 0 tel que g(x) > 0 dans un voisinage épointé de x, alors lim, ., f(z)g(x) = +oc.

6) Sig(x) > f(x) pour tout x dans un voisinage épointé de x,, alors lim,_,,, g(x) = +o0.
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Exemple 7.31. Parfois, on peut devoir faire une factorisation avant d’utiliser les propriétés ci-
dessus :

. r?—1 . (x=1)(z+1)
lim ——— =
es—1t 224+ 2x 4+ 1  am—1+ (z+1)2

= lim (x—1) = —0.

=1t e T+ 1
020 ~~—
—+o00

7.8 Limites z — +o0

Dans cette section, on étudie le comportement des fonctions loin de 1'origine, en considérant des
limites ot x — F-o0.

Comme la problématique est essentiellement la méme que celle introduite dans I’étude des suites
(a,) et de leurs limites lorsque n — oo, on se contentera de donner les définitions, calquées sur
celles du chapitre sur les suites, et de donner quelques exemples.

7.8.1 Limites finies

Définition 7.32. 1) Soit f dont le domaine contient un intervalle de la forme |a, +o00[. Alors
lim f(z) = L sipour toute > 0il existe N > 0 tel que |f(z) — L| < ¢ dés que = > N.

T—+00

2) Soit f dont le domaine contient un intervalle de la forme | — oo, b[. Alors lim f(z) = L si
IT—>—00

pour tout ¢ > 0 il existe N < 0 tel que |f(z) — L| < e des que z < N.

On pourra utiliser sans autre toutes les propriétés listées dans la lecon sur les limites de suites,
ainsi que les techniques pour étudier ces limites (extraire le terme dominant, conjugué, etc.).

7.8.2 Limites infinies

Définition 7.33. 1) Soit f une fonction dont le domaine contient un intervalle de la forme
la, +ool.

x| lim f(z) = 400 |si et seulement si pour tout M > 0 il existe N > 0 tel que f(z) > M

T—+00

dés quez > N.

* lirf f(z) = —oo|si et seulement si pour tout m < 0 il existe N > 0 tel que f(z) < m
T—+00

dés quez > N.

2) Soit f une fonction dont le domaine contient un intervalle de la forme | — oo, b|.

x| lim f(z) = +o0|si et seulement si pour tout M > 0 il existe N < 0 tel que f(z) > M

T——00

dés que z < N.

x| lim f(z) = —oo|si et seulement si pour tout m < 0 il existe N < 0 tel que f(z) < m

T——00

des que z < N.

Exemple 7.34. Considérons le comportement des fonctions polynomiales f(z) = 2%, oup € Z*. Si
p est négatif, alors

lim 2 =0.
r—+o00
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Par contre si p est positif, alors

lim 2P = +o00,
T—+400

et
) 400  sip est pair,
lim 2P = ,p p .
T——00 —0o0  s1pestimpair.

Exemple 7.35. Exponentielle de base ¢ > 0 (a # 1) :

T—r—00

: e +oo si0<a<l,
lim a® = .
sia>1.

lim " = )
T—+00 +o00 sia>1.

i {0 si0<a<1,

a=1.461...
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<

Remarque 7.36. Le fait qu’ici on considere une fonction f de la variable réelle x, a I'inverse des
suites dont la “variable” est un entier n, fait que certains outils nouveaux feront leur apparition,
comme la regle de Bernoulli-1"Hopital (voir chapitre sur la dérivation).

Nous reviendrons par exemple sur les limites qui caractérisent la vitesse avec laquelle certaines
fonctions fondamentales tendent vers 'infini, comme

L (log, ()

T—00 T

=0, p,a > 0.
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