Chapitre 13

Intégrales généralisées

13.1 Introduction

Rappelons que l'intégrale a été définie pour des fonctions bornées, définies sur un intervalle [a, b],
fermé et borné. Dans ce cadre, la continuité s’est avérée une condition suffisante pour garantir
I'intégrabilité.

Dans cette section, nous allons étendre l'intégration a des fonctions définies sur des intervalles

ot elle n’est plus forcément bornée, par exemple sur un intervalle a, b], possédant une asymptote
verticale,

lim f(z)= 400,

z—at
N

R

.
NN

= b

b
v

ou alors sur des intervalles non-bornés, du type [a, +o0[, tendant vers zéro,

lim f(x)=0.

T—00

Des intégrales de ce type sont généralisées, puisqu’elles n’entrent pas dans le cadre de l'intégrale
de Riemann/Darboux présentée jusqu’ici.
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Informel 13.1. Une autre appelation, pour les intégrales généralisées, est celle d’intégrales im-
propres.

13.2 Typel

En guise d’introduction, considérons le probléme suivant : comment intégrer une fonction conti-
nue, mais définie sur un intervalle qui n’est pas fermé, par exemple de la forme |a, b]?

Supposons donc que f : ]a,b] — R est continue en tout point =, € ]a, b, et que f est continue a
gauche en b. Lorsque [ possede une limite a droite en a, on peut la prolonger par continuité, et
ensuite définir son intégrale au sens classique d’une fonction continue sur |a, b].

Exemple 13.2. Considérons f(x) = xlog(z) sur |0, 1], qui est bien continue. Puisque

lim f(z) =0,

z—0t

On peut définir
~ rlog(z) si0O<z <1,
oy = 21080
0 siz =0,
et définir I'intégrale de f sur |0, 1] comme l'intégrale de f sur [0, 1]. Puisque f est continue, cette
intégrale est bien définie. Puisque

2 2

/xlog(m) dr = % log(z) — % +C

on peut considérer

Fla) = T log(x) — % S?O<JJ<1,
0 sixz =0,

qui est une primitive de f continue sur [0, 1]. Ainsi, par le Théoreme Fondamental,

~ 1

/0 flw)de = F(1) - F(0) = -

Lorsque f n’a pas de limite lorsque x — a™, f ne peut pas étre prolongée par continuité.
Exemple 13.3. Considérons f :|0, 1] — R, définie par

@) ==
et essayons de calculer 'aire sous son graphe :
3
Z\ frx)
e
N)
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Le probléme avec cette fonction est qu’elle n’est pas bornée, puisque
lim f(x) = +o0.
z—07t f( )

Par conséquent, il n'est méme pas clair que 1’aire sous son graphe soit bien définie. On ne peut
pas mettre en place la méthode classique d’intégration au sens de Riemann/Darboux : la somme
de Darboux supérieure a son premier rectangle qui est toujours de hauteur infinie! Donc cette
fonction ne peut pas s’intégrer de maniére naive, en sommant simplement des aires de rectangles,

et on ne peut pas donner le sens classique au symbole fo -5 da”

L’idée, pour intégrer cette fonction, va étre de traiter le probléeme en = = 0 en utilisant un proces-
sus de limite.

En effet, si on fixe un nombre quelconque 0 < ¢ < 1, petit, on peut restreindre f a I'intervalle
[e,1]. Comme f : [¢,1] — R est continue (et par conséquent bornée), on peut l'intégrer de facon
standard, et méme utiliser le théoréme fondamental :

/f dx—/ e =2z =201~ ).

Cette intégrale dépend de ¢, mais elle se comporte bien lorsque ¢ s’approche de zéro (par la
droite).

L
~_ dz —0.905
feﬁ ¢

On peut en fait prendre la limite ¢ — 0%, pour donner un sens a l'intégrale de f sur ]0, 1], au sens

d’une limite : .

1
li —dr = 2.

&

Informel 13.4. Ca peut paraitre contre-intuitif : la région délimitée par le graphe de la fonction
de ce dernier exemple n’est pas “limitée” : elle s’étend infiniment loin le long de 1’axe des y > 0.
Pourtant, son aire est finie : on pourrait la recouvrir entierement a 'aide d’une quantité finie de
peinture! Ceci est dti au fait que lorsque z — 07, f(z) tend vers I'infini mais “pas trop vite”.

Ce phénomeéne est semblable a celui rencontré dans 1’étude des séries convergentes, ou il est
possible de sommer une infinité de nombres strictement positifs, et obtenir une somme totale
finie.
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L’idée utilisée dans ce dernier exemple peut se généraliser :

Définition 13.5. 1) Soit f: ]a,b] — R telle que pour tout a < o < b, f soit continue sur |a, b]. Si

la limite "

/b f(x)dz := lim bf(a:) dr = lim f(x)dx

a—at J, e—0t G

existe et est finie, on 1'appelle 1'intégrale généralisée de type I, et on dit qu’elle converge.
Si la limite est +00, ou si elle n’existe pas, on dit que l'intégrale généralisée diverge.

2) Soit f: [a,b] — R telle que pour tout a < § < b, f soit continue sur [a, 5]. Si la limite
- B b—e
/a flx)dx = Bli)rlrjl_ /a f(x)de = gﬁl : f(x)dx
existe et est finie, on I'appelle I'intégrale généralisée de type I, et on dit qu’elle converge.
Si la limite est 00, ou si elle n’existe pas, on dit que l’intégrale généralisée diverge.

Exemple 13.6. Considérons I'intégrale généralisée de f(x) = L sur l'intervalle 0, 1] :

1 1
1 1

/ —dzr = lim —dx
o+ s e—0t e T

1

= lim 1
al}él* Og(ﬁﬁ’) €
= lim (-1
lim (—log(e))
= +OO 3
donc l'intégrale diverge. o
fl L dr =120
e &
: 1
Informel 13.7. Dans ce dernier exemple, f(z) = < tend vers +oo lorsque z — 07, “trop vite” pour

que son intégrale généralisée soit finie.
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Exemple 13.8. L'intégrale généralisée de f(z) =

lim
B—5—

= lim
B—5—

= lim

B—5— 2

35/3

\3/% sur [2,5[ converge, car

L |
2 \3/5—1'

3 B
55— )

2

§{32/3 —(5- 5)2/3}

Remarquons que lim,_,5- f(z) = +o0.

13.2.1 Un critére de comparaison

NP e e cce c e = s o a= =

Dans beaucoup de situations pratiques, on doit déterminer si une intégrale généralisée de type I
converge ou diverge, sans se préoccuper de connaitre sa valeur (au cas ot elle converge). Pour ¢a,
on aimerait éviter de passer par la connaissance de la primitive de f, en utilisant une comparaison.
On peut le faire si la fonction est de signe constant :

Proposition 16. Soient f,g: ]a,b] — R continues sur tout intervalle [, b], a < a < b, et telles que

Alors :

1) Si/

b

+
b

Vz € ]a,b] .

b
g(x) dx converge, alors / f(z) dz converge aussi.
at

2) Si /i f(z) dz = +oo (diverge), alors /+ g(x) dx = 400 (diverge aussi).
Preuve:
\
AN
|
;. o b i
276
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Sion fixe a < a < b, alors par la propriété de l'intégrale classique,

/:f(m)dxg/abg(x)dx.

Remarquons que les deux cotés de cette inégalité sont des fonctions positives, monotones décroissantes
en a. Puisque folj g(z) dz est majorée par sa limite lorsque @ — a*, qui est finie et vaut f;ﬁ g(z) dz, ceci

implique aussi que
b b
/ f(z)dr < / g(z)dx.
a at

On obtient la premiere affirmation en prenant la limite &« — a™ dans cette inégalité.
La deuxiéme se démontre de la méme fagon, en prenant d’abord la limite « — a™ dans fj f(z)dx. O

Remarque 13.9. Remarquons que ce résultat est I’analogue continu direct du critere de comparai-
son pour les séries. o

Exemple 13.10. Etudions la convergence de l'intégrale généralisée

/2 1
——dx.
1+ \/.%3—1

. .l 1 , Ay N . .
Le calcul de la primitive de == étant hardu, on cherche plut6t a faire une comparaison avec

I'intégrale d"une autre fonction, plus simple.

En effet, pour tout x €]1, 2], on peut factoriser 2 — 1,

0< f(z) = L ! < =g(x).

2 ~1 \/(:L’—l)(x2—i—x—|—1) Va1

>0

Mais maintenant,

2 2 5
/ g(x)dr = lim g(z)dr = lim 2v/z — 1| =2 (converge).
1 o

+ a—=1t [, a—1t
Donc l'intégrale de f converge aussi.

2 2 . . T
On a donc montré que [ \/z+7_1 dx converge, sans avoir eu besoin de calculer une primitive de

1

Vo1 ©

b da
13.2.2 Intégrales du type / —

0+ x4

On a vu dans les exemples que si
lim f(z) = +o0,

z—0+

alors la convergence/divergence de intégrale généralisée f0b+ f(x) dz va dépendre de la “vitesse”
alaquelle f(z) tend vers l'infini a I'approche de 07. Dans le cas des fonctions du type f(z) = &,
on peut distinguer exactement les cas en fonction de la valeur de I’exposant ¢ :

Théoréme 13.11. Pour tout b > 0,

/b dr TT—; (converge) siq <1,
o+ ¥9 | +oo (diverge)  sig>1.
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Preuve: On a déja vu le cas ¢ = 1 dans un exemple, donc on considere ¢ # 1. Fixons 0 < a < b. Par un

calcul explicite de la primitive,
bdx 1 1 1
o x4 1 —q{bq—1 a aq—l}

+o00, et

Puis il suffit de remarquer que
* siq > 1,alors lim,_,q+ ﬁ =
* sig<1,alors1 —g¢q >0, etdonclim,_,g+ # = lim,_,o+ @!77 =0,

ce qui conclut la preuve. O

Exemple 13.12. Considérons

i
/2—615”7
o+ 22 cos(z)

qui est généralisée puisque lim, o+ = +00. Comme 0 < cos(x) < 1 pour tout  €]0, 7], on

peut utiliser la comparaison

z2 cos(x)

I 1 71
/ 2—dm>/ — dx = 400,
o+ 22 cos(z) o+ X2

puisque dans cette derniere, ¢ = 2 > 1. o

13.2.3 Un critére via une limite de quotient

Une conséquence de la proposition énoncée plus haut :

Proposition 17. Soient f, g :|a,b] — R, continues, telles que

lim m =L>0.
z—at g(l‘)

b b
Alors / f(z) dx converge si et seulement si / g(x) dx converge.
at a

+
-
(I existe bien stir une affirmation analogue pour f(x)dzx.)
a
Preuve: Par l'existence et positivité de la limite, il existe ¢ > 0 tel que

L_f@) _sL

5SS 5 Vo €la,a+ 9.
2 S 42 5 x €la,a+ 9|
On a donc
L 3L
0< 59@) < flz) < ?g(x), Vx €la,a+ 4|,
d’ot1 on peut obtenir les comparaisons voulues, a I'aide du critére de comparaison énoncé plus haut.  [J

Exemple 13.13. Etudions la convergence de l'intégrale généralisée

U sin(Z2?)

_1+ \/CL""].

Cette intégrale est bien généralisée puisque lim, , 1+ f(x) = +oo. Pourtant, on remarque que ce
qui fait tendre f vers I'infini, c’est la présence de —=— : le sinus ne pose pas de probleme (a part

Va+l
pour le calcul de la primitive). Si on pose

dx .

1
g(x) = Vs
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alors
1 1
/ g(xr) = lim / dx
1+ a——1% J, x+1
=2 lim (\/_—\/a+1)
a——171
=2V2.
Et comme
lim J(@) = lim sin(32°)=1>0,
z——17t g(ZE) z——1t
I'intégrale généralisée de f converge aussi. o

Exemple 13.14. L'exemple vu précédemment, | 12+ \/% dx, peut aussi se traiter en utilisant la pro-

position. Posons
1

xTr) = s
qui comme on sait a une intégrale généralisée sur |1, 2] convergente (puisque ¢ = 5 < 1). On
remarque alors que

-1 1 1
lim@:lim x = lim,44y/———=—>0,
o1t g(w)  asir Va3 —1 oot Va2+a+1 /3

, . e 2
on en déduit, par la proposition, que [/, ﬁ dx converge. o

13.3 Typell

Un autre type d’intégrale important, qui n’entre pas dans le cadre de I'intégrale de Riemann/Darboux,
est celui o1 on intégre une fonction sur un domaine non-borné. Ici, on considérera principalement
des intervalles de la forme

la,0[, ]—o00,b], ou]—o0,+o0f.
Exemple 13.15. Considérons f(z) = e, sur [a, oo|. Par exemple, sia = 0:
4
1
~2X
/NE

////fllv.

On sait que
lim f(z)=0,

T—+00
mais peut-on quand-méme calculer 'aire sous son graphe?
Ici aussi, 'approche classique ne fonctionne pas puisqu’on n’a pas de fagon naturelle d’approxi-

mer l'aire sous la courbe avec une somme finie de rectangles : le dernier rectangle de la somme de
Darboux supérieure aura toujours une aire infinie!
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Par contre, on peut toujours intégrer la fonction sur un intervalle borné et fermé, [a, L], ot L > a

est grand, fixé :
L L
/ —x d _ —x __—a —L
e "dr = —e =e " —e".
a

a

Cette derniére expression dépend de L, mais on voit qu’elle se comporte bien lorsque L grandit.
En fait, on peut prendre la limite L — oo (sur I’animation, changer L et observer comme la valeur
de l'intégrale tend vers une valeur a mesure que L augmente) :

L
f e~*,dz = 0.484

Ce que 'on peut donc faire, c’est donner un sens a l'intégrale de f sur [a, +oo], a 'aide d'une
limite :

—+o00 L
e Tdr = lim e Tdxr = lim (6_“ — e_L) =e %,
a L—oo a L—oo

Comme dans la section précédente, ce résultat peut paraitre peu intuitif, puisque la région sous
le graphe n’est pas limitée dans le plan. Elle s’étend infiniment loin le long de 1'axe des x > 0 et
pourtant, on pourrait la peindre avec une quantité finie de peinture. o

13.3.1 Intégrer sur un intervalle non-borné

Généralisons 1'idée présentée dans le dernier exemple :

Définition 13.16. 1) Soit f: [a, c0] — R continue. Si la limite

/aoo f(z)dz == lim /aLf(x) dz |

L—oo
existe et est finie, on 1’appelle 1'intégrale généralisée de Type II (de f sur [a, o), et on dit
qu’elle converge. Si la limite n’existe pas, on dit que l'intégrale généralisée diverge.

2) Soit f: |—00,b] — R continue. Si la limite

[ @ = jim_[ s,

existe et est finie, on 'appelle I'intégrale généralisée de Type II (de f sur | — oo, b)), et on dit
qu’elle converge. Si la limite n’existe pas, on dit que l'intégrale généralisée diverge.

Si f est positive sur tout l'intervalle, 1'intégrale généralisée peut étre interprétée comme l'aire
sous son graphe. Mais l'intégrale généralisée est définie pour des fonctions de signe a priori quel-
conque, et dans ce cas, la valeur de l'intégrale ne peut plus étre interprétée comme une aire géo-
meétrique.
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[L f(z),dz = 0.499

e

On se souvient que dans le chapitre sur les séries, la série harmonique a un terme général qui tend
vers zéro, mais trop lentement pour faire converger la série.

Le méme phénomene s’observe dans les intégrales de Type II : il ne suffit pas que lim,_,, f(z) =0
pour que son intégrale généralisée converge.

Exemple 13.17. Considérons f(z) = < sur [1,00[. Ona

1 |
/ —dx = lim —dx
1 x L—oo 1 X

L
= lim log(z)

L—oo

= lim log(L)
L—o0

1

= 0.
<

Informel 13.18. Dans I'exemple ci-dessus : la fonction % tend vers zéro lorsque z — oo, elle ne

tend “pas vers zéro assez vite pour étre intégrable a I'infini”.

Exemple 13.19. Considérons f(z) = 7 sur [1, 400l ;

]

*  dx ) L dx
5 = lim 5
1 X +1 L—oo J1 T +1

= Lll_)Ir;O{arctan(L) — arctan(1)} =

™
1 .

[N
AN

&

Remarque 13.20. Remarquons qu’a la différence des séries, une fonction peut ne pas tendre vers
zéro et avoir une intégrale convergente! Considérons une fonction dont le graphe est du type
suivant :
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La fonction est celle définie par les contours des triangles, et vaut zéro entre les triangles. Le keme
triangle a une base de largeur b;, > 0; tous les triangles sont de hauteur égale a 1. Comme f(z) > 0,
I'intégrale généralisée représente 1’aire sous le graphe de f, qui vaut la somme des aires de tous

les triangles :
/ f(z)dz = ZAk :Zbk7
0

k>1 k>1
ou A, = by - 1 = by, est I'aire du keme triangle. Si les bases décroissent suffisamment vite, alors la
somme des aires de tous les triangles est finie. On peut le garantir en prenant par exemple b, = 5.

Dans ce cas,
& 1
/0 f(x)d:z::ZAk:Z@:L

k>1 k>1
donc l'intégrale converge. Pourtant, comme les triangles ont tous une hauteur égale a 1, 1a fonction
ne tend pas vers zéro. o

Exemple 13.21. Une intégrale de Type II trés importante en théorie des probabilités (et en statis-
tiques), est celle utilisée pour définir la fonction d’erreur (de Gauss) :

v

On peut montrer (exercice) que l'intégrale converge toujours, et définit donc bien une fonction de
reR. o

13.3.2 Un critére de comparaison

Comme pour celles de Type I, les intégrales de Type II ont un critére de comparaison, valabe pour
des fonctions de signe constant.

Proposition 18. Soient f,g: [a, 00 — R continues, telles que
0< fz) <glx)  Vaela,o0.

Alors :
1) Si [ g(x) dx converge, alors [ f(x) dx converge aussi.
2) Si [ f(x)dx = +oo, alors [ g(x) dw = +oc.

Preuve: Par la propriété de l'intégrale de Riemann/Darboux on peut écrire, pour tout L > a,
L L
0< [ f@ydr< [ glodo,
a a

et par la propriété de Chasles, ces deux intégrales sont monotones croissantes en L. Puisque la limite de la
deuxiéme existe et est finie, celle de la premiere 1’est aussi. O
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Exemple 13.22. Ftudions la convergence de I'intégrale généralisée donnée par

& 2
/ e v dr.
0

N . oy 2 . A . z
On ne connait pas de primitive pour e™*, mais on peut quand-méme montrer que l'intégrale
converge, en utilisant une comparaison. Le choix de la comparaison va étre guidé par le fait que
. . . 2 2 . A . z — .
si on ne sait pas intégrer e~*", on sait quand-méme intégrer e~**, quel que soit ¢ > 0.

Décomposons d’abord l'intégrale en deux,

00 2 00
/ e dy = / e~ dx + / e dx ,
0 0 2

La premiere partie ne pose pas de probleme : c’est l'intégrale d'une fonction continue sur un

intervalle fermé et borné, [0, 2]. Pour la deuxiéme partie, on a toujours que = > 2, et donc 2% =
. A —x2 —

r-x 2= 2r,cequientraine ) < e ™ <e 2z_Or comme

o] o ) 1 o L 1 4
e ““dr = lim {——e H =—e 7,
2 L—oo 2 2 2

2 . . . . ,.
on conclut que [~ e~ dx converge aussi. (On a pris ¢ = 2, mais on aurait pu prendre n'importe
quel ¢ > 0.) o

Exemple 13.23. Considérons

0 1
——dx.
/1 vad+1

On pourrait essayer d’utiliser le fait que pour tout z > 1,
Vb +1 = Vb = T,
ce qui donne N N
/1 \S/ﬁ dr < /1 é dr .

Malheureusement, comme l'intégrale du membre de droite est infinie, cette inégalité ne nous dit
rien sur 'intégrale de départ!

Remarquons que si z > 1, alors 2° > 1° = 1, et donc

1 1 1 1
2 = = .
Vb +1 7 Vb b V2ab Vx
Mais comme [;~ % diverge, notre intégrale diverge aussi. o
) > dx

13.3.3 Intégrales du type -

x

a

Théoreme 13.24. Pour tout a > 0,

/Ood_a: _ W (converge) sip > 1,
o TP +o0o (diverge) sip<1.

Preuve: On a déja traité le cas p = 1 dans un exemple précédent :

L—oo a

o q L
/ —dx = lim log(x)| =400
o
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Ensuite, pour p # 1, on peut faire

Ldy  gptl
/a P —-p+1

L1 {(L,}l—a,,}l) sip>1

« 1-p (L7 - L) sip<1
Donc
lim/Ld‘r:{(pl%(ﬂ?_l sip>1,
Lo ), aP oo sip<1,
ce qui conclut la preuve pour tous les cas. -

a _ L
p=1.300 -

Informel 13.25. Donc l'intégrale de xip “a I'infini” est tres sensible a la valeur de p lorsque p est
proche de 1! Par exemple,

e dx
. 210000000001 < +oo,

alors que

e dzx
2:0-9999999999 = +00,
1

Exemple 13.26. Considérons

< dx
. TT+1
On peut en principe, avec les méthodes du chapitre sur I'intégration des fonctions rationnelles
(lien vers la section m_integrale fonctions_rationnelles), calculer la primitive de x71+1.
Mais si on désire juste savoir si cette intégrale converge ou diverge, sans passer par la primitive,

on peut utiliser une comparaison et le théoréme ci-dessus. En effet, comme < % pour tout
x > 0 (donc en particulier pour tout z > 1), on a

/°° dx </°°d$<
1 xT+1 e

En effet, dans cette derniere,a =1 > 0,etp =7 > 1. o

zT4+1
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Informel 13.27. Majorer une fonction positive f(x) par une autre fonction plus simple est un bon
moyen d’étudier la convergence de son intégrale, en évitant de passer par sa primitive. Mais il
faut prendre garde a ne pas introduire de nouveau probleme en faisant cette majoration.

Considérons
/ > dx
o L3+z+1°
Cette intégrale est de Type II, puisqu’elle est continue sur [0, co| (en particulier, elle est continue
et bornée au voisinage de 0 et donc n’est pas de Type I). Pour l'étudier, on observe que son com-

portement pour = grand, est régi essentiellement par le terme “z3”, ce qui mene a remarquer que
Vr+12>0,etaécrire la comparaison

1 1
0 ——— < —.
B+ +1 " a8

Malheureusement, la fonction = a un probléme en zéro, que la fonction de départ n’avait pas.
x

Pour pouvoir profiter de cette comparaison, on peut d’abord séparer 1'intégrale en deux, en écri-
vant par exemple

/ > dx B / ! dx n / > dx
o BHvVT+1l  Jy B+Vz+l )y B+r+l
La premiere intégrale est une intégrale de Riemann/Darboux, et est donc bien définie. C’est pour

la deuxieéme que 1'on peut utiliser la comparaison et le fait que l'intégrale de =5 est convergente,
puisque maintenant sur l'intervalle [1, oo] :

/°° dx </°°da:<
—_ — < 00.
L, 24+ +1 ), a8

On en déduit que l'intégrale est convergente.

13.3.4 Un critére via une limite de quotient

Proposition 19. Soient f, g : [a, +0o[— R continues, telles que

lim M =L>0.
a=+00 g(z)

Alors / f(z) dx converge si et seulement si / g(x) dx converge.

b
Il existe bien stir une affirmation analogue pour / f(z) du.

Exemple 13.28. Considérons l'intégrale généralisée

/ o dx
5 2%+ sin(z)esin@)
Remarquons que la fonction que l'integre est bien définie, puisque

xz—l—sin(x)esm(m)>x2—e>4—e>0 Vo > 2.
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Lorsque z est grand, ce qui est responsable de la petitesse de f(r) = —"—mm = 0 est le “z?”

22 +4sin(z)esin(@)

au dénominateur. Ceci suggere de considérer

lim 2 —
1m ———- = llIn .
z—o0 g(x) 200 22 4 sin(x)esin(@)

1
T—00 | + Sm(miez

Or l'intégrale de g converge (p = 2 > 1), donc celle de f converge aussi. o

13.3.5 Utilisation dans I’étude des séries

Nous allons voir maintenant que parfois, une série peut étre comparée a une intégrale généralisée
de Type II, ce qui peut grandement faciliter I'étude de sa convergence. Ceci vient du fait que
I'intégrale étant par définition construite a I’aide d"une variable continue x, son étude peut se faire
a l’aide du Théoreme Fondamental de 1’Analyse (un outil qui n’existe pas pour I'étude des séries,
dont la variable n est discrete).

Considérons une série ) -, a, dont le terme général a,, est en fait une fonction réelle f(z) évaluée
enzr=mn:

ap = f(n)

Il est alors possible, sous certaines conditions, de relier la convergence de la série a 1'intégrabilité
de la fonction a l'infini :

Théoreme 13.29. Soit a > Oet f : [a, co[— R, continue et décroissante. Soit ny un entier tel que ng > a.
Considérons la série de terme général a,, = f(n). Alors

Z a, converge <& / f(z)dz converge.

n=ngo
Preuve: Pour simplifier, supposons que a = ng = 1.

D’une part, pour chaque entier n > 2, on peut interpréter a,, comme l'aire d'un rectangle de largeur égale
a 1 situé a gauche de z = n, dont la base est l'intervalle [n — 1,n], de hauteur a,, = f(n). Comme f est
décroissante, ce rectangle est au-dessous du graphe de f sur tout l'intervalle [n — 1,n]:

W $
\:

a,
Q;
W\ Q
‘\\\\ 5 " aQ
. %G e M Bhdl
x\ W\ N \\.' QQ’\ \q‘-: il I

1 2 3 4 s 6 3 8
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On peut donc écrire

;ané/l f(z)dzx

Cette inégalité implique que si I'intégrale est finie, alors la série converge, et si la série diverge, alors 'inté-
grale diverge aussi.

D’autre part on peut, pour chaque entier n > 1, interpréter a,, comme l’aire d"un rectangle de largeur égale
a 1 situé a droite de x = n, dont la base est l'intervalle [n,n + 1], de hauteur a,, = f(n). Comme f est
décroissante, ce rectangle est au-dessus du graphe de f sur tout l'intervalle [n,n + 1] :

-

A7
/
// /// /s ,a:'/,E'S/ OV YA B

1 2 3 4 s [ 3 4

On peut donc écrire
Z ap, > / f(z)dx
n>1 1

Cette inégalité implique que si l'intégrale est infinie, alors la série diverge, et si la série converge, alors

l'intégrale converge. O
Exemple 13.30. Comme f(z) = - est décroissante pour tout p > 0, on déduit du théoreme précé-
dent que
1 1
Z — converge <& —dxr converge.
n=1 n 1 P

Par le théoréme de la section précédente, ceci fournit donc le résultat déja prouvé dans le chapitre
sur les séries :

Z 1 )Jconverge sip>1,

=y nP |diverge si0<p<1.

&

Passons maintenant au cas d'un type de série qu’aucun de nos critéres de convergence permet
d’étudier :
Exemple 13.31. Considérons
1
2 ol
ou p > 0.

Si = 0, cette série est la série harmonique, donc elle diverge. Mais si ;1 > 0, son terme général
décroit strictement plus vite que +. On peut alors se poser la question de savoir si le terme m
est suffisant pour permettre a la série de converger.

Voyons le terme général comme a,, = f(n), ol
B 1
~ a(log(z))”

Remarquons que f est positive et strictement décroissante, puisque

()

iy (log@)" + p(log )"~
fl(x) =— ((log 1)) <0 Vzx=2.
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Dongc, par le théoreme précédent, la série converge si et seulement si l'intégrale généralisée

o 1
et
2 x(logz)

converge. Mais, par le changement de variable z = log(z),

00 L
/ S U T A S
o z(logx)r L= [y x(logz)"

log L 1

= lim —dz

L—oo 10g2 ZH

<1
:/ —LdZ,
log 2 2

qui comme on sait converge si et seulement si 1+ > 1. On en conclut que

Z 1 converge sipu>1,
“ n(log(n))* | diverge  sip<1.

o

Remarque 13.32. Ce dernier résultat permet de donner des exemples de séries dont le terme gé-
néral décroit plus vite que celui de la série harmonique, mais qui sont aussi divergentes. Par
exemple : 3°, - diverge. o

n nlog(n

13.4 TypeIllI

Les intégrales généralisées de Type III représentent des combinaisons d’intégrales de Types I et
II.

13.4.1 Mélange de Type I et]

Définition 13.33. Soit f :]a, b[— R continue, et soit a < ¢ < b. Si

/+ f(z)de et / 7 f(z)dx

[ sae= [ sies [ s

et on dit que l'intégrale généralisée converge; si au moins une des intégrales diverge, on dit
qu’elle diverge.

convergent, on pose

Exemple 13.34. Considérons l'intégrale de Type III

1
—dux.
o+ V2x — 12

On peut la décomposer en

1 1

2 2
/ ; dr = dr + / ; dx .
v Vivi—u e viva— "t ava—e
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Le changement de variable x = p(u) = 2u® permet d’écrire

4u du =

/w—laf":/m%

Ce changement de variable montre que la premiére intégrale converge,

! 1 ! 1
——dx = lim —dx
ot VIV2 — 2 a_>o+/E V2 —x
1/\/5 1
=2 lim

—du
e—0t /8/2 \ 1 — u2
=2 lim (arcsin(l/\/i) — arcsin( 5/2))
e—0t

=2 (arcsin(l/ﬁ) - arcsin(0)>

= 2arcsin(1/V2) .
de méme pour la deuxieme :
1 Y L
/1 V2 —zx e = b’ligl—/l NI e
VI
=2 lim

s vicae™

= QBlirg_ (arcsin( B/2) — arcsin(l/\/§)>
=2 (arcsin(l) - arcsin(l/x/é))

= 7 — 2arcesin(1/v/2) .

donc l'intégrale converge, et sa valeur est

1
2 | ——du.
/\/1—u2

o
1
——dz = 2arcsin(1/V?2) + (7 — 2 arcsin(1/v2
= (1/VD) + (1/v3)
=T.
o
Exemple 13.35. Considérons l'intégrale de Type III
1—
1
——dzr,
o+ TvV1—=
que 'on décompose naturellement en
1— 1 1—
1 2 1 1
———dx = —dm—l—/ ——dx.
/o+ /1l —x /0+ vl —x 1 vl —x
La deuxieme intégrale converge puisque
1— 1-
1 1
———dxr < ———dx
1 vl —x 1 %31—1‘
=
=2 / . dx
1 1—2
2
1
7=
= —du < 00
ot Vu
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qui converge (p = 5 < 1). Par contre la premiere diverge puisque

do = V2 —dx:oo

/0+ m /m \/’ o+ T

Donc l'intégrale diverge. S

13.4.2 Mélange de Types I et Il

Définition 13.36. Soit f :]a, +0o[— R continue, et soit a < ¢ < 00. Si

/ C f(z)dx et / h f(x)dx convergent,

[ s@iei= [ g@de s [ s

et on dit que l'intégrale généralisée converge; si au moins une des intégrales diverge, on dit
qu’elle diverge.

on pose

Exemple 13.37. Considérons

1]
/0+ de
0 1 2 0 1
/0+ x3/2dx_/0+x3/2dx+/2 TR
3

Comme ici, p = 5 > 1, la premiere diverge et la deuxieme converge. Donc toute l'intégrale di-
verge. o

On sépare :

Exemple 13.38. Considérons l'intégrale de Type III donnée par

OOe—x
—dx.

En décomposant

€ = " et
[ G- [

on remarque que la premiere (de Type I) converge puisque e”® < 1 pour tout z > 0, et donc

s [,

qui converge puisque p = 5 < 1. La deuxiéme converge aussi puisque

ooe—:c OOe—x
da;g/ ——dr=e".
L7 A

Donc l'intégrale de Type III converge. o
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13.4.3 Mélange de Type Il et II

Définition 13.39. Soit f : R — R continue, et soit ¢ € R. Si

/_; f(z)dx et /COO f(z)dz

/Z f(z)dr = /; f(z)dz + /COO f(2)dz .

et on dit que l'intégrale généralisée converge; si au moins une des intégrales diverge, on dit
qu’elle diverge.

convergent, on pose

Remarque 13.40. Remarquons que comme dans le cas précédent, le choix du nombre ¢ n’influe
pas sur la convergence/divergence de l'intégrale, ni sur la valeur de 1'intégrale (dans le cas ou
elle est convergente). o

*
—d
/_OO:U2+1 “

00 0 0o
x x x
dx = d dx .
/Oox2+1 v /OO:E2+1 x+/0 241

0 L
T , x .1
/0 x2+1dx:hm x2+1dx:hm §log(L2+1):+oo,

L—oo 0 L—oo

Exemple 13.41. Considérons

que 1'on décompose en

Comme

I'intégrale est divergente. o

Informel 13.42. Remarquons que dans ce dernier exemple, le fait que la fonction est impaire
implique que pour tout L > 0,
L
/ = _dz=0,
_rre+1

L

et donc évidemment
T

dr =0,

I
Linolo L $2 —+ 1

Mais cette limite n’est pas la définition de [*° £ du.

—0o x2+41
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