
Chapitre 13

Intégrales généralisées

13.1 Introduction

Rappelons que l’intégrale a été définie pour des fonctions bornées, définies sur un intervalle [a, b],
fermé et borné. Dans ce cadre, la continuité s’est avérée une condition suffisante pour garantir
l’intégrabilité.

Dans cette section, nous allons étendre l’intégration à des fonctions définies sur des intervalles
où elle n’est plus forcément bornée, par exemple sur un intervalle ]a, b], possédant une asymptote
verticale,

lim
x→a+

f(x) = +∞ ,

ou alors sur des intervalles non-bornés, du type [a,+∞[, tendant vers zéro,

lim
x→∞

f(x) = 0 .

Des intégrales de ce type sont généralisées, puisqu’elles n’entrent pas dans le cadre de l’intégrale
de Riemann/Darboux présentée jusqu’ici.
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13.2. Type I

Informel 13.1. Une autre appelation, pour les intégrales généralisées, est celle d’intégrales im-
propres.

13.2 Type I

En guise d’introduction, considérons le problème suivant : comment intégrer une fonction conti-
nue, mais définie sur un intervalle qui n’est pas fermé, par exemple de la forme ]a, b]?

Supposons donc que f : ]a, b] → R est continue en tout point x0 ∈ ]a, b[, et que f est continue à
gauche en b. Lorsque f possède une limite à droite en a, on peut la prolonger par continuité, et
ensuite définir son intégrale au sens classique d’une fonction continue sur [a, b].
Exemple 13.2. Considérons f(x) = x log(x) sur ]0, 1], qui est bien continue. Puisque

lim
x→0+

f(x) = 0 ,

On peut définir

f̃(x) :=

{
x log(x) si 0 < x ⩽ 1 ,

0 si x = 0 ,

et définir l’intégrale de f sur ]0, 1] comme l’intégrale de f̃ sur [0, 1]. Puisque f̃ est continue, cette
intégrale est bien définie. Puisque∫

x log(x) dx =
x2

2
log(x)− x2

4
+ C

on peut considérer

F̃ (x) =

{
x2

2
log(x)− x2

4
si 0 < x ⩽ 1 ,

0 si x = 0 ,

qui est une primitive de f̃ continue sur [0, 1]. Ainsi, par le Théorème Fondamental,∫ 1

0

f̃(x) dx = F̃ (1)− F̃ (0) = −1

4
.

⋄

Lorsque f n’a pas de limite lorsque x→ a+, f ne peut pas être prolongée par continuité.
Exemple 13.3. Considérons f :]0, 1] → R, définie par

f(x) =
1√
x
,

et essayons de calculer l’aire sous son graphe :
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13.2. Type I

Le problème avec cette fonction est qu’elle n’est pas bornée, puisque

lim
x→0+

f(x) = +∞ .

Par conséquent, il n’est même pas clair que l’aire sous son graphe soit bien définie. On ne peut
pas mettre en place la méthode classique d’intégration au sens de Riemann/Darboux : la somme
de Darboux supérieure a son premier rectangle qui est toujours de hauteur infinie ! Donc cette
fonction ne peut pas s’intégrer de manière naïve, en sommant simplement des aires de rectangles,
et on ne peut pas donner le sens classique au symbole “

∫ 1

0
1√
x
dx”.

L’idée, pour intégrer cette fonction, va être de traiter le problème en x = 0 en utilisant un proces-
sus de limite.

En effet, si on fixe un nombre quelconque 0 < ε < 1, petit, on peut restreindre f à l’intervalle
[ε, 1]. Comme f : [ε, 1] → R est continue (et par conséquent bornée), on peut l’intégrer de façon
standard, et même utiliser le théorème fondamental :∫ 1

ε

f(x) dx =

∫ 1

ε

1√
x
dx = 2

√
x
∣∣∣1
ε
= 2(1−

√
ε) .

Cette intégrale dépend de ε, mais elle se comporte bien lorsque ε s’approche de zéro (par la
droite).

On peut en fait prendre la limite ε → 0+, pour donner un sens à l’intégrale de f sur ]0, 1], au sens
d’une limite :

lim
ε→0+

∫ 1

ε

1√
x
dx = 2 .

⋄

Informel 13.4. Ça peut paraître contre-intuitif : la région délimitée par le graphe de la fonction
de ce dernier exemple n’est pas “limitée” : elle s’étend infiniment loin le long de l’axe des y > 0.
Pourtant, son aire est finie : on pourrait la recouvrir entièrement à l’aide d’une quantité finie de
peinture ! Ceci est dû au fait que lorsque x→ 0+, f(x) tend vers l’infini mais “pas trop vite”.

Ce phénomène est semblable à celui rencontré dans l’étude des séries convergentes, où il est
possible de sommer une infinité de nombres strictement positifs, et obtenir une somme totale
finie.
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L’idée utilisée dans ce dernier exemple peut se généraliser :

Définition 13.5. 1) Soit f : ]a, b] → R telle que pour tout a < α < b, f soit continue sur [α, b]. Si
la limite ∫ b

a+
f(x) dx := lim

α→a+

∫ b

α

f(x) dx = lim
ε→0+

∫ b

a+ε

f(x) dx

existe et est finie, on l’appelle l’intégrale généralisée de type I, et on dit qu’elle converge.
Si la limite est ±∞, ou si elle n’existe pas, on dit que l’intégrale généralisée diverge.

2) Soit f : [a, b[ → R telle que pour tout a < β < b, f soit continue sur [a, β]. Si la limite∫ b−

a

f(x) dx := lim
β→b−

∫ β

a

f(x) dx = lim
ε→0+

∫ b−ε

a

f(x) dx

existe et est finie, on l’appelle l’intégrale généralisée de type I, et on dit qu’elle converge.
Si la limite est ±∞, ou si elle n’existe pas, on dit que l’intégrale généralisée diverge.

Exemple 13.6. Considérons l’intégrale généralisée de f(x) = 1
x

sur l’intervalle ]0, 1] :∫ 1

0+

1

x
dx = lim

ε→0+

∫ 1

ε

1

x
dx

= lim
ε→0+

log(x)
∣∣∣1
ε

= lim
ε→0+

(− log(ε))

= +∞ ,

donc l’intégrale diverge. ⋄

Informel 13.7. Dans ce dernier exemple, f(x) = 1
x

tend vers +∞ lorsque x→ 0+, “trop vite” pour
que son intégrale généralisée soit finie.
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Exemple 13.8. L’intégrale généralisée de f(x) = 1
3√5−x sur [2, 5[ converge, car∫ 5−

2

1
3
√
5− x

= lim
β→5−

∫ β

2

1
3
√
5− x

= lim
β→5−

−3

2
(5− x)2/3

∣∣∣β
2

= lim
β→5−

3

2

{
32/3 − (5− β)2/3

}
=

35/3

2
.

Remarquons que limx→5− f(x) = +∞. ⋄

13.2.1 Un critère de comparaison

Dans beaucoup de situations pratiques, on doit déterminer si une intégrale généralisée de type I
converge ou diverge, sans se préoccuper de connaître sa valeur (au cas où elle converge). Pour ça,
on aimerait éviter de passer par la connaissance de la primitive de f , en utilisant une comparaison.
On peut le faire si la fonction est de signe constant :

Proposition 16. Soient f, g : ]a, b] → R continues sur tout intervalle [α, b], a < α < b, et telles que

0 ⩽ f(x) ⩽ g(x) ∀x ∈ ]a, b] .

Alors :

1) Si
∫ b

a+
g(x) dx converge, alors

∫ b

a+
f(x) dx converge aussi.

2) Si
∫ b

a+
f(x) dx = +∞ (diverge), alors

∫ b

a+
g(x) dx = +∞ (diverge aussi).

Preuve:
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Si on fixe a < α < b, alors par la propriété de l’intégrale classique,∫ b

α
f(x) dx ⩽

∫ b

α
g(x) dx .

Remarquons que les deux côtés de cette inégalité sont des fonctions positives, monotones décroissantes
en α. Puisque

∫ b
α g(x) dx est majorée par sa limite lorsque α → a+, qui est finie et vaut

∫ b
a+ g(x) dx, ceci

implique aussi que ∫ b

α
f(x) dx ⩽

∫ b

a+
g(x) dx .

On obtient la première affirmation en prenant la limite α→ a+ dans cette inégalité.

La deuxième se démontre de la même façon, en prenant d’abord la limite α→ a+ dans
∫ b
α f(x) dx.

Remarque 13.9. Remarquons que ce résultat est l’analogue continu direct du critère de comparai-
son pour les séries. ⋄
Exemple 13.10. Étudions la convergence de l’intégrale généralisée∫ 2

1+

1√
x3 − 1

dx .

Le calcul de la primitive de 1√
x3−1

étant hardu, on cherche plutôt à faire une comparaison avec
l’intégrale d’une autre fonction, plus simple.

En effet, pour tout x ∈]1, 2], on peut factoriser x3 − 1,

0 ⩽ f(x) =
1√

x3 − 1
=

1√
(x− 1)(x2 + x︸ ︷︷ ︸

⩾0

+1)
⩽

1√
x− 1

= g(x) .

Mais maintenant,∫ 2

1+
g(x) dx = lim

α→1+

∫ 2

α

g(x) dx = lim
α→1+

2
√
x− 1

∣∣∣2
α
= 2 (converge) .

Donc l’intégrale de f converge aussi.

On a donc montré que
∫ 2

1+
1√
x3−1

dx converge, sans avoir eu besoin de calculer une primitive de
1√
x3−1

. ⋄

13.2.2 Intégrales du type
∫ b

0+

dx

xq

On a vu dans les exemples que si
lim
x→0+

f(x) = +∞ ,

alors la convergence/divergence de intégrale généralisée
∫ b
0+
f(x) dx va dépendre de la “vitesse”

à laquelle f(x) tend vers l’infini à l’approche de 0+. Dans le cas des fonctions du type f(x) = 1
xq

,
on peut distinguer exactement les cas en fonction de la valeur de l’exposant q :

Théorème 13.11. Pour tout b > 0,∫ b

0+

dx

xq
=

{
b1−q

1−q (converge) si q < 1 ,

+∞ (diverge) si q ⩾ 1 .
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Preuve: On a déjà vu le cas q = 1 dans un exemple, donc on considère q ̸= 1. Fixons 0 < α < b. Par un
calcul explicite de la primitive, ∫ b

α

dx

xq
=

1

1− q

{ 1

bq−1
− 1

αq−1

}
Puis il suffit de remarquer que

⋆ si q > 1, alors limα→0+
1

αq−1 = +∞, et

⋆ si q < 1, alors 1− q > 0, et donc limα→0+
1

αq−1 = limα→0+ α
1−q = 0,

ce qui conclut la preuve.

Exemple 13.12. Considérons ∫ π
4

0+

1

x2 cos(x)
dx ,

qui est généralisée puisque limx→0+
1

x2 cos(x)
= +∞. Comme 0 < cos(x) ⩽ 1 pour tout x ∈]0, π

4
], on

peut utiliser la comparaison ∫ π
4

0+

1

x2 cos(x)
dx ⩾

∫ π
4

0+

1

x2
dx = +∞ ,

puisque dans cette dernière, q = 2 > 1. ⋄

13.2.3 Un critère via une limite de quotient

Une conséquence de la proposition énoncée plus haut :

Proposition 17. Soient f, g :]a, b] → R+, continues, telles que

lim
x→a+

f(x)

g(x)
= L > 0 .

Alors
∫ b

a+
f(x) dx converge si et seulement si

∫ b

a+
g(x) dx converge.

(Il existe bien sûr une affirmation analogue pour
∫ b−

a

f(x) dx.)

Preuve: Par l’existence et positivité de la limite, il existe δ > 0 tel que

L

2
⩽
f(x)

g(x)
⩽

3L

2
, ∀x ∈]a, a+ δ[ .

On a donc
0 <

L

2
g(x) ⩽ f(x) ⩽

3L

2
g(x) , ∀x ∈]a, a+ δ[ ,

d’où on peut obtenir les comparaisons voulues, à l’aide du critère de comparaison énoncé plus haut.

Exemple 13.13. Étudions la convergence de l’intégrale généralisée∫ 1

−1+

sin(π
2
x2)

√
x+ 1

dx .

Cette intégrale est bien généralisée puisque limx→−1+ f(x) = +∞. Pourtant, on remarque que ce
qui fait tendre f vers l’infini, c’est la présence de 1√

x+1
: le sinus ne pose pas de problème (à part

pour le calcul de la primitive). Si on pose

g(x) :=
1√
x+ 1

,
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alors ∫ 1

−1+
g(x) = lim

α→−1+

∫ 1

α

1√
x+ 1

dx

= 2 lim
α→−1+

(√
2−

√
α + 1

)
= 2

√
2 .

Et comme

lim
x→−1+

f(x)

g(x)
= lim

x→−1+
sin(π

2
x2) = 1 > 0 ,

l’intégrale généralisée de f converge aussi. ⋄
Exemple 13.14. L’exemple vu précédemment,

∫ 2

1+
1√
x3−1

dx, peut aussi se traiter en utilisant la pro-
position. Posons

g(x) =
1√
x− 1

,

qui comme on sait a une intégrale généralisée sur ]1, 2] convergente (puisque q = 1
2
< 1). On

remarque alors que

lim
x→1+

f(x)

g(x)
= lim

x→1+

√
x− 1

x3 − 1
= lim

x→1+

√
1

x2 + x+ 1
=

1√
3
> 0 ,

on en déduit, par la proposition, que
∫ 2

1+
1√
x3−1

dx converge. ⋄

13.3 Type II

Un autre type d’intégrale important, qui n’entre pas dans le cadre de l’intégrale de Riemann/Darboux,
est celui où on intègre une fonction sur un domaine non-borné. Ici, on considérera principalement
des intervalles de la forme

[a,∞[ , ]−∞, b] , ou ]−∞,+∞[ .

Exemple 13.15. Considérons f(x) = e−x, sur [a,∞[. Par exemple, si a = 0 :

On sait que
lim

x→+∞
f(x) = 0 ,

mais peut-on quand-même calculer l’aire sous son graphe?

Ici aussi, l’approche classique ne fonctionne pas puisqu’on n’a pas de façon naturelle d’approxi-
mer l’aire sous la courbe avec une somme finie de rectangles : le dernier rectangle de la somme de
Darboux supérieure aura toujours une aire infinie !
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Par contre, on peut toujours intégrer la fonction sur un intervalle borné et fermé, [a, L], où L > a
est grand, fixé : ∫ L

a

e−x dx = −e−x
∣∣∣L
a
= e−a − e−L .

Cette dernière expression dépend de L, mais on voit qu’elle se comporte bien lorsque L grandit.
En fait, on peut prendre la limite L→ ∞ (sur l’animation, changer L et observer comme la valeur
de l’intégrale tend vers une valeur à mesure que L augmente) :

Ce que l’on peut donc faire, c’est donner un sens à l’intégrale de f sur [a,+∞[, à l’aide d’une
limite : ∫ +∞

a

e−x dx := lim
L→∞

∫ L

a

e−x dx = lim
L→∞

(
e−a − e−L

)
= e−a .

Comme dans la section précédente, ce résultat peut paraître peu intuitif, puisque la région sous
le graphe n’est pas limitée dans le plan. Elle s’étend infiniment loin le long de l’axe des x > 0 et
pourtant, on pourrait la peindre avec une quantité finie de peinture. ⋄

13.3.1 Intégrer sur un intervalle non-borné

Généralisons l’idée présentée dans le dernier exemple :

Définition 13.16. 1) Soit f : [a,∞[ → R continue. Si la limite∫ ∞

a

f(x) dx := lim
L→∞

∫ L

a

f(x) dx ,

existe et est finie, on l’appelle l’intégrale généralisée de Type II (de f sur [a,∞[), et on dit
qu’elle converge. Si la limite n’existe pas, on dit que l’intégrale généralisée diverge.

2) Soit f : ]−∞, b] → R continue. Si la limite∫ b

−∞
f(x) dx := lim

L→−∞

∫ b

L

f(x) dx ,

existe et est finie, on l’appelle l’intégrale généralisée de Type II (de f sur ]−∞, b]), et on dit
qu’elle converge. Si la limite n’existe pas, on dit que l’intégrale généralisée diverge.

Si f est positive sur tout l’intervalle, l’intégrale généralisée peut être interprétée comme l’aire
sous son graphe. Mais l’intégrale généralisée est définie pour des fonctions de signe a priori quel-
conque, et dans ce cas, la valeur de l’intégrale ne peut plus être interprétée comme une aire géo-
métrique.
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On se souvient que dans le chapitre sur les séries, la série harmonique a un terme général qui tend
vers zéro, mais trop lentement pour faire converger la série.

Le même phénomène s’observe dans les intégrales de Type II : il ne suffit pas que limx→∞ f(x) = 0
pour que son intégrale généralisée converge.
Exemple 13.17. Considérons f(x) = 1

x
sur [1,∞[. On a∫ ∞

1

1

x
dx = lim

L→∞

∫ L

1

1

x
dx

= lim
L→∞

log(x)
∣∣∣L
1

= lim
L→∞

log(L)

= ∞ .

⋄
Informel 13.18. Dans l’exemple ci-dessus : la fonction 1

x
tend vers zéro lorsque x → ∞, elle ne

tend “pas vers zéro assez vite pour être intégrable à l’infini”.

Exemple 13.19. Considérons f(x) = 1
1+x2

sur [1,+∞[ :

∫ ∞

1

dx

x2 + 1
= lim

L→∞

∫ L

1

dx

x2 + 1

= lim
L→∞

{
arctan(L)− arctan(1)

}
=
π

2
− π

4
=
π

4
.

⋄
Remarque 13.20. Remarquons qu’à la différence des séries, une fonction peut ne pas tendre vers
zéro et avoir une intégrale convergente ! Considérons une fonction dont le graphe est du type
suivant :
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La fonction est celle définie par les contours des triangles, et vaut zéro entre les triangles. Le kème
triangle a une base de largeur bk > 0 ; tous les triangles sont de hauteur égale à 1. Comme f(x) ⩾ 0,
l’intégrale généralisée représente l’aire sous le graphe de f , qui vaut la somme des aires de tous
les triangles : ∫ ∞

0

f(x) dx =
∑
k⩾1

Ak =
∑
k⩾1

bk ,

où Ak = bk · 1 = bk est l’aire du kème triangle. Si les bases décroissent suffisamment vite, alors la
somme des aires de tous les triangles est finie. On peut le garantir en prenant par exemple bk = 1

2k
.

Dans ce cas, ∫ ∞

0

f(x) dx =
∑
k⩾1

Ak =
∑
k⩾1

1

2k
= 1 ,

donc l’intégrale converge. Pourtant, comme les triangles ont tous une hauteur égale à 1, la fonction
ne tend pas vers zéro. ⋄
Exemple 13.21. Une intégrale de Type II très importante en théorie des probabilités (et en statis-
tiques), est celle utilisée pour définir la fonction d’erreur (de Gauss) :

Φ(x) :=
1√
2π

∫ x

−∞
e−t

2/2 dt

On peut montrer (exercice) que l’intégrale converge toujours, et définit donc bien une fonction de
x ∈ R. ⋄

13.3.2 Un critère de comparaison

Comme pour celles de Type I, les intégrales de Type II ont un critère de comparaison, valabe pour
des fonctions de signe constant.

Proposition 18. Soient f, g : [a,∞[ → R continues, telles que

0 ⩽ f(x) ⩽ g(x) ∀x ∈ [a,∞[ .

Alors :

1) Si
∫∞
a
g(x) dx converge, alors

∫∞
a
f(x) dx converge aussi.

2) Si
∫∞
a
f(x) dx = +∞, alors

∫∞
a
g(x) dx = +∞.

Preuve: Par la propriété de l’intégrale de Riemann/Darboux on peut écrire, pour tout L > a,

0 ⩽
∫ L

a
f(x) dx ⩽

∫ L

a
g(x) dx ,

et par la propriété de Chasles, ces deux intégrales sont monotones croissantes en L. Puisque la limite de la
deuxième existe et est finie, celle de la première l’est aussi.
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Exemple 13.22. Étudions la convergence de l’intégrale généralisée donnée par∫ ∞

0

e−x
2

dx .

On ne connaît pas de primitive pour e−x2 , mais on peut quand-même montrer que l’intégrale
converge, en utilisant une comparaison. Le choix de la comparaison va être guidé par le fait que
si on ne sait pas intégrer e−x2 , on sait quand-même intégrer e−cx, quel que soit c > 0.

Décomposons d’abord l’intégrale en deux,∫ ∞

0

e−x
2

dx =

∫ 2

0

e−x
2

dx+

∫ ∞

2

e−x
2

dx ,

La première partie ne pose pas de problème : c’est l’intégrale d’une fonction continue sur un
intervalle fermé et borné, [0, 2]. Pour la deuxième partie, on a toujours que x ⩾ 2, et donc x2 =
x · x ⩾ 2x, ce qui entraîne 0 ⩽ e−x

2
⩽ e−2x. Or comme∫ ∞

2

e−2x dx = lim
L→∞

{
−1

2
e−2x

}∣∣∣L
2
=

1

2
e−4 ,

on conclut que
∫∞
0
e−x

2
dx converge aussi. (On a pris c = 2, mais on aurait pu prendre n’importe

quel c > 0.) ⋄
Exemple 13.23. Considérons ∫ ∞

1

1
5
√
x5 + 1

dx .

On pourrait essayer d’utiliser le fait que pour tout x ⩾ 1,

5
√
x5 + 1 ⩾

5
√
x5 = x ,

ce qui donne ∫ ∞

1

1
5
√
x5 + 1

dx ⩽
∫ ∞

1

1

x
dx .

Malheureusement, comme l’intégrale du membre de droite est infinie, cette inégalité ne nous dit
rien sur l’intégrale de départ !
Remarquons que si x ⩾ 1, alors x5 ⩾ 15 = 1, et donc

1
5
√
x5 + 1

⩾
1

5
√
x5 + x5

=
1

5
√
2x5

=
1

5
√
2x

.

Mais comme
∫∞
1

dx
x

diverge, notre intégrale diverge aussi. ⋄

13.3.3 Intégrales du type
∫ ∞

a

dx

xp

Théorème 13.24. Pour tout a > 0,∫ ∞

a

dx

xp
=

{
1

(p−1)ap−1 (converge) si p > 1 ,

+∞ (diverge) si p ⩽ 1 .

Preuve: On a déjà traité le cas p = 1 dans un exemple précédent :∫ ∞

a

1

x
dx = lim

L→∞
log(x)

∣∣∣L
a
= +∞
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Ensuite, pour p ̸= 1, on peut faire

∫ L

a

dx

xp
=

x−p+1

−p+ 1

∣∣∣L
a
=

1

1− p

{
( 1
Lp−1 − 1

ap−1 ) si p > 1

(L1−p − 1
ap−1 ) si p < 1

Donc

lim
L→∞

∫ L

a

dx

xp
=

{
1

(p−1)ap−1 si p > 1 ,

+∞ si p < 1 ,

ce qui conclut la preuve pour tous les cas.

Informel 13.25. Donc l’intégrale de 1
xp

“à l’infini” est très sensible à la valeur de p lorsque p est
proche de 1 ! Par exemple, ∫ ∞

1

dx

x1.0000000001
< +∞ ,

alors que ∫ ∞

1

dx

x0.9999999999
= +∞ ,

Exemple 13.26. Considérons ∫ ∞

1

dx

x7 + 1
.

On peut en principe, avec les méthodes du chapitre sur l’intégration des fonctions rationnelles
(lien vers la section m_integrale_fonctions_rationnelles), calculer la primitive de 1

x7+1
.

Mais si on désire juste savoir si cette intégrale converge ou diverge, sans passer par la primitive,
on peut utiliser une comparaison et le théorème ci-dessus. En effet, comme 1

x7+1
⩽ 1

x7
pour tout

x > 0 (donc en particulier pour tout x ⩾ 1), on a

∫ ∞

1

dx

x7 + 1
⩽
∫ ∞

1

dx

x7
<∞

En effet, dans cette dernière, a = 1 > 0, et p = 7 > 1. ⋄
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Informel 13.27. Majorer une fonction positive f(x) par une autre fonction plus simple est un bon
moyen d’étudier la convergence de son intégrale, en évitant de passer par sa primitive. Mais il
faut prendre garde à ne pas introduire de nouveau problème en faisant cette majoration.

Considérons ∫ ∞

0

dx

x3 +
√
x+ 1

.

Cette intégrale est de Type II, puisqu’elle est continue sur [0,∞[ (en particulier, elle est continue
et bornée au voisinage de 0 et donc n’est pas de Type I). Pour l’étudier, on observe que son com-
portement pour x grand, est régi essentiellement par le terme “x3”, ce qui mène à remarquer que√
x+ 1 ⩾ 0, et à écrire la comparaison

0 ⩽
1

x3 +
√
x+ 1

⩽
1

x3
.

Malheureusement, la fonction 1
x3

a un problème en zéro, que la fonction de départ n’avait pas.

Pour pouvoir profiter de cette comparaison, on peut d’abord séparer l’intégrale en deux, en écri-
vant par exemple ∫ ∞

0

dx

x3 +
√
x+ 1

=

∫ 1

0

dx

x3 +
√
x+ 1

+

∫ ∞

1

dx

x3 +
√
x+ 1

.

La première intégrale est une intégrale de Riemann/Darboux, et est donc bien définie. C’est pour
la deuxième que l’on peut utiliser la comparaison et le fait que l’intégrale de 1

x3
est convergente,

puisque maintenant sur l’intervalle [1,∞[ :∫ ∞

1

dx

x3 +
√
x+ 1

⩽
∫ ∞

1

dx

x3
<∞ .

On en déduit que l’intégrale est convergente.

13.3.4 Un critère via une limite de quotient

Proposition 19. Soient f, g : [a,+∞[→ R+ continues, telles que

lim
x→+∞

f(x)

g(x)
= L > 0 .

Alors
∫ ∞

a

f(x) dx converge si et seulement si
∫ ∞

a

g(x) dx converge.

Il existe bien sûr une affirmation analogue pour
∫ b

−∞
f(x) dx.

Exemple 13.28. Considérons l’intégrale généralisée∫ ∞

2

dx

x2 + sin(x)esin(x)
.

Remarquons que la fonction que l’intègre est bien définie, puisque

x2 + sin(x)esin(x) ⩾ x2 − e ⩾ 4− e > 0 ∀x ⩾ 2 .
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Lorsque x est grand, ce qui est responsable de la petitesse de f(x) = 1
x2+sin(x)esin(x)

⩾ 0 est le “x2”
au dénominateur. Ceci suggère de considérer

g(x) =
1

x2
.

On a bien f(x), g(x) ⩾ 0 pour tout x ⩾ 2, et

lim
x→∞

f(x)

g(x)
= lim

x→∞

x2

x2 + sin(x)esin(x)

= lim
x→∞

1

1 + sin(x)esin(x)

x2

= 1 > 0

Or l’intégrale de g converge (p = 2 > 1), donc celle de f converge aussi. ⋄

13.3.5 Utilisation dans l’étude des séries

Nous allons voir maintenant que parfois, une série peut être comparée à une intégrale généralisée
de Type II, ce qui peut grandement faciliter l’étude de sa convergence. Ceci vient du fait que
l’intégrale étant par définition construite à l’aide d’une variable continue x, son étude peut se faire
à l’aide du Théorème Fondamental de l’Analyse (un outil qui n’existe pas pour l’étude des séries,
dont la variable n est discrète).

Considérons une série
∑

n⩾1 an dont le terme général an est en fait une fonction réelle f(x) évaluée
en x = n :

an = f(n)

Il est alors possible, sous certaines conditions, de relier la convergence de la série à l’intégrabilité
de la fonction à l’infini :
Théorème 13.29. Soit a > 0 et f : [a,∞[→ R+, continue et décroissante. Soit n0 un entier tel que n0 ⩾ a.
Considérons la série de terme général an = f(n). Alors∑

n⩾n0

an converge ⇔
∫ ∞

a

f(x) dx converge .

Preuve: Pour simplifier, supposons que a = n0 = 1.

D’une part, pour chaque entier n ⩾ 2, on peut interpréter an comme l’aire d’un rectangle de largeur égale
à 1 situé à gauche de x = n, dont la base est l’intervalle [n − 1, n], de hauteur an = f(n). Comme f est
décroissante, ce rectangle est au-dessous du graphe de f sur tout l’intervalle [n− 1, n] :
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On peut donc écrire ∑
n⩾2

an ⩽
∫ ∞

1
f(x) dx

Cette inégalité implique que si l’intégrale est finie, alors la série converge, et si la série diverge, alors l’inté-
grale diverge aussi.

D’autre part on peut, pour chaque entier n ⩾ 1, interpréter an comme l’aire d’un rectangle de largeur égale
à 1 situé à droite de x = n, dont la base est l’intervalle [n, n + 1], de hauteur an = f(n). Comme f est
décroissante, ce rectangle est au-dessus du graphe de f sur tout l’intervalle [n, n+ 1] :

On peut donc écrire ∑
n⩾1

an ⩾
∫ ∞

1
f(x) dx

Cette inégalité implique que si l’intégrale est infinie, alors la série diverge, et si la série converge, alors
l’intégrale converge.

Exemple 13.30. Comme f(x) = 1
xp

est décroissante pour tout p ⩾ 0, on déduit du théorème précé-
dent que ∑

n⩾1

1

np
converge ⇔

∫ ∞

1

1

xp
dx converge .

Par le théorème de la section précédente, ceci fournit donc le résultat déjà prouvé dans le chapitre
sur les séries : ∑

n⩾1

1

np

{
converge si p > 1 ,

diverge si 0 ⩽ p ⩽ 1 .

⋄

Passons maintenant au cas d’un type de série qu’aucun de nos critères de convergence permet
d’étudier :
Exemple 13.31. Considérons ∑

n⩾2

1

n(log(n))µ
,

où µ > 0.
Si µ = 0, cette série est la série harmonique, donc elle diverge. Mais si µ > 0, son terme général
décroît strictement plus vite que 1

n
. On peut alors se poser la question de savoir si le terme 1

log(n)µ

est suffisant pour permettre à la série de converger.
Voyons le terme général comme an = f(n), où

f(x) =
1

x(log(x))µ
.

Remarquons que f est positive et strictement décroissante, puisque

f ′(x) = −(log x)µ + µ(log x)µ−1

(x(log x)µ)2
< 0 ∀x ⩾ 2 .
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Donc, par le théorème précédent, la série converge si et seulement si l’intégrale généralisée∫ ∞

2

1

x(log x)γ
dx

converge. Mais, par le changement de variable z = log(x),∫ ∞

2

1

x(log x)µ
dx = lim

L→∞

∫ L

2

1

x(log x)µ
dx

= lim
L→∞

∫ logL

log 2

1

zµ
dz

=

∫ ∞

log 2

1

zµ
dz ,

qui comme on sait converge si et seulement si µ > 1. On en conclut que

∑
n⩾2

1

n(log(n))µ

{
converge si µ > 1 ,

diverge si µ ⩽ 1 .

⋄
Remarque 13.32. Ce dernier résultat permet de donner des exemples de séries dont le terme gé-
néral décroît plus vite que celui de la série harmonique, mais qui sont aussi divergentes. Par
exemple :

∑
n

1
n log(n)

diverge. ⋄

13.4 Type III

Les intégrales généralisées de Type III représentent des combinaisons d’intégrales de Types I et
II.

13.4.1 Mélange de Type I et I

Définition 13.33. Soit f :]a, b[→ R continue, et soit a < c < b. Si∫ c

a+
f(x)dx et

∫ b−

c

f(x)dx

convergent, on pose ∫ b−

a+
f(x)dx :=

∫ c

a+
f(x)dx+

∫ b−

c

f(x)dx .

et on dit que l’intégrale généralisée converge ; si au moins une des intégrales diverge, on dit
qu’elle diverge.

Exemple 13.34. Considérons l’intégrale de Type III∫ 2−

0+

1√
2x− x2

dx.

On peut la décomposer en∫ 2−

0+

1
√
x
√
2− x

dx =

∫ 1

0+

1
√
x
√
2− x

dx+

∫ 2−

1

1
√
x
√
2− x

dx .
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Le changement de variable x = φ(u) = 2u2 permet d’écrire∫
1

√
x
√
2− x

dx =

∫
1√

2u
√
2− 2u2

4u du = 2

∫
1√

1− u2
du .

Ce changement de variable montre que la première intégrale converge,∫ 1

0+

1
√
x
√
2− x

dx = lim
ε→0+

∫ 1

ε

1
√
x
√
2− x

dx

= 2 lim
ε→0+

∫ 1/
√
2

√
ε/2

1√
1− u2

du

= 2 lim
ε→0+

(
arcsin(1/

√
2)− arcsin(

√
ε/2)

)
= 2

(
arcsin(1/

√
2)− arcsin(0)

)
= 2arcsin(1/

√
2) .

de même pour la deuxième :∫ 2−

1

1
√
x
√
2− x

dx = lim
β→2−

∫ β

1

1
√
x
√
2− x

dx

= 2 lim
β→2−

∫ √
β/2

1/
√
2

1√
1− u2

du

= 2 lim
β→2−

(
arcsin(

√
β/2)− arcsin(1/

√
2)
)

= 2
(
arcsin(1)− arcsin(1/

√
2)
)

= π − 2 arcsin(1/
√
2) .

donc l’intégrale converge, et sa valeur est∫ 2−

0+

1
√
x
√
2− x

dx = 2arcsin(1/
√
2) + (π − 2 arcsin(1/

√
2))

= π .

⋄
Exemple 13.35. Considérons l’intégrale de Type III∫ 1−

0+

1

x
√
1− x

dx ,

que l’on décompose naturellement en∫ 1−

0+

1

x 3
√
1− x

dx =

∫ 1
2

0+

1

x 3
√
1− x

dx+

∫ 1−

1
2

1

x 3
√
1− x

dx .

La deuxième intégrale converge puisque∫ 1−

1
2

1

x 3
√
1− x

dx ⩽
∫ 1−

1
2

1
1
2

3
√
1− x

dx

= 2

∫ 1−

1
2

1
3
√
1− x

dx

= 2

∫ 1
2

0+

1
3
√
u
du <∞ .
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qui converge (p = 1
3
< 1). Par contre la première diverge puisque

∫ 1
2

0+

1

x 3
√
1− x

dx ⩾
∫ 1

2

0+

1

x 3

√
1
2

dx =
3
√
2

∫ 1
2

0+

1

x
dx = ∞ .

Donc l’intégrale diverge. ⋄

13.4.2 Mélange de Types I et II

Définition 13.36. Soit f :]a,+∞[→ R continue, et soit a < c <∞. Si∫ c

a+
f(x)dx et

∫ ∞

c

f(x)dx convergent,

on pose ∫ ∞

a+
f(x)dx :=

∫ c

a+
f(x)dx+

∫ ∞

c

f(x)dx ,

et on dit que l’intégrale généralisée converge ; si au moins une des intégrales diverge, on dit
qu’elle diverge.

Exemple 13.37. Considérons ∫ ∞

0+

1

x3/2
dx .

On sépare : ∫ ∞

0+

1

x3/2
dx =

∫ 2

0+

1

x3/2
dx+

∫ ∞

2

1

x3/2
.

Comme ici, p = 3
2
> 1, la première diverge et la deuxième converge. Donc toute l’intégrale di-

verge. ⋄
Exemple 13.38. Considérons l’intégrale de Type III donnée par∫ ∞

0+

e−x√
x
dx .

En décomposant ∫ ∞

0+

e−x√
x
dx =

∫ 1

0+

e−x√
x
dx+

∫ ∞

1

e−x√
x
dx ,

on remarque que la première (de Type I) converge puisque e−x ⩽ 1 pour tout x ⩾ 0, et donc∫ 1

0+

e−x√
x
dx ⩽

∫ 1

0+

1√
x
dx ,

qui converge puisque p = 1
2
< 1. La deuxième converge aussi puisque∫ ∞

1

e−x√
x
dx ⩽

∫ ∞

1

e−x√
1
dx = e−1 .

Donc l’intégrale de Type III converge. ⋄
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13.4.3 Mélange de Type II et II

Définition 13.39. Soit f : R → R continue, et soit c ∈ R. Si∫ c

−∞
f(x)dx et

∫ ∞

c

f(x)dx

convergent, on pose ∫ ∞

−∞
f(x)dx :=

∫ c

−∞
f(x)dx+

∫ ∞

c

f(x)dx .

et on dit que l’intégrale généralisée converge ; si au moins une des intégrales diverge, on dit
qu’elle diverge.

Remarque 13.40. Remarquons que comme dans le cas précédent, le choix du nombre c n’influe
pas sur la convergence/divergence de l’intégrale, ni sur la valeur de l’intégrale (dans le cas où
elle est convergente). ⋄
Exemple 13.41. Considérons ∫ ∞

−∞

x

x2 + 1
dx ,

que l’on décompose en ∫ ∞

−∞

x

x2 + 1
dx =

∫ 0

−∞

x

x2 + 1
dx+

∫ ∞

0

x

x2 + 1
dx .

Comme ∫ ∞

0

x

x2 + 1
dx = lim

L→∞

∫ L

0

x

x2 + 1
dx = lim

L→∞

1

2
log(L2 + 1) = +∞ ,

l’intégrale est divergente. ⋄

Informel 13.42. Remarquons que dans ce dernier exemple, le fait que la fonction est impaire
implique que pour tout L > 0, ∫ L

−L

x

x2 + 1
dx = 0 ,

et donc évidemment

lim
L→∞

∫ L

−L

x

x2 + 1
dx = 0 ,

Mais cette limite n’est pas la définition de
∫∞
−∞

x
x2+1

dx.
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