Chapitre 6

Fonctions réelles

6.1 Introduction

Dans ce chapitre, on commence 1'étude des fonctions réelles d'une variable. Les notions de base
relatives a ces fonctions (injectivité, surjectivité, bijectivité, graphe) se trouvent ici (lien vers la
sectionm_fonctions_generalites_fonctions_reelles).

Nous commencerons, dans ce chapitre, par décrire brievement certaines propriétés particulieres
qu’une fonction peut posséder (monotonie, parité, périodicité), et introduirons les notions de mi-
nimum/maximum ainsi que d’infimum/supremum.

Les notions de limite associées a une fonction réelle, puis celles de continuité, dérivabilité et intégra-
bilité feront ’objet de toute la suite du cours.

6.2 Monotonie

Une premiere propriété trés particuliere qu'une fonction peut posséder est celle d’étre monotone.

Définition 6.1. I C R un intervalle et soit f : I — R.
1) f estcroissante sur [ si f(z;) < f(z2) pour tout z1,z2 € I, 21 < 2.
2) f est strictement croissante sur [ si f(z;) < f(xq) pour tout xy, 29 € I, 21 < Z9.
3) f est décroissante sur [ si f(z;) > f(x2) pour tout z1, 22 € I, 21 < 2.
4) f est strictement décroissante sur [ si f(z1) > f(x2) pour tout z1,z2 € I, 21 < 2.

Si f satisfait une de ces propriétés, elle est monotone.
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6.3. Parité

Exemple 6.2. La fonction f(z) = 2? est strictement croissante sur R, . En effet, si 0 < z; < x, alors
29 — x1 > 0, et donc

flxe) = f(z1) = 23 — aF = (22 — 21) (22 + 21) > 0,
>0 >0

ce qui implique que f(z1) < f(x2). De méme, on montre que f(z) = z? est strictement décrois-
sante sur R_. o>

Exemple 6.3. Par notre définition, une fonction qui est constante sur I (c.a-d. qu’il existe un réel C
tel que f(z) = C pour tout x € I) est a la fois croissante et décroissante sur /. o

6.2.1 Variation

Etudier la variation d"une fonction, c’est trouver les intervalles sur lesquelles elle est croissante /décroissar

L’étude de la variation d"une fonction donnée, basée uniquement sur la définition de cette fonction
(comme z? dans 'exemple ci-dessus), peut étre difficile. Le calcul différentiel, que nous développe-
rons plus loin, fournira un outil puissant permettant de faire cette analyse.

6.3 Parité

Une autre propriété qu’une fonction peut posséder est par rapport a son comportement vis-a-vis
de la transformation z — —uz.

Ci-dessous, on considere des fonctions dont le domaine D C R est symétrique c’est-a-dire que si
x € D,alors —z € D.

Définition 6.4. f : D — R est dite paire si

f(=z) = f(x) VeeD.
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6.3. Parité

Sile point (z,y) = (z, f(z)) appartient au graphe de f, alors le point

(=2, f(=2)) = (=2, f(x)) = (==,y)

appartient aussi au graphe de f. On conclut que le graphe d'une fonction paire est invariant sous
Ieffet d’une réflexion par rapport a I'axe Oy.

fl(—= flx
(—z) ~ (z)

Définition 6.5. f : D — R est dite impaire si

f(=z) = —f(z) VeeD.

Sile point (z,y) = (z, f(z)) appartient au graphe, alors le point

(=2, f(=2)) = (=2, f(2)) = (=2, —y)

appartient aussi graphe de f. Donc le graphe d"une fonction impaire est invariant sous une rotation
de 180° autour de I'origine :

L ]
2@

f(—=z) 0

Exemple 6.6. Décrivons I'exemple qui est a I'origine de la dénomination de fonction “paire” ou
“impaire”. Pour un entier p € Z, la fonction

flw) = 2

est
% Ppaire si p est pair,

* impaire si p est impair.
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6.3. Parité

Remarquons que si p est négatif, alors 0 ne fait pas partie du domaine de f. o
q—
f@) =z
()

Exemple 6.7. Sur D = R, x — cos(z) est paire,

et z — sin(x) est impaire,

(I

Sur D = R\ {5 +kr : k € Z}, v tan(z) est impaire :
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6.3. Parité

A

En effet,
_osin(—z) _ —sin(z)
tan(—z) = cos(—n)  cos(a) tan(z) .
o
Exemple 6.8. Montrons que la fonction f : R* — R définie par
_ sin(2z)
fla) = S22
est paire. En effet, pour tout x € R*,
_ sin(2(—-x))  —sin(2z)  sin(2z)
floa) = S = e = S = ().
o

Pour montrer qu'une fonction n’est pas paire (resp. pas impaire), il suffit de trouver un point x,
de son domaine ot f(—xz.) # f(x.) (resp. f(—x.) # —f(x.)).

Exemple 6.9. Considérons, sur R, la fonction f(z) = x+1. Onremarque que f(—1) =0et f(1) =2,
etdonc f(—1) # f(1), et donc f n’est pas paire. Et comme f(—1) # —f(1), f n’est pas impaire non
plus. o

Une fonction, en général, n'a pas de raison d’étre paire ou impaire; pourtant toute fonction
contient un peu d’une fonction paire, et un peu d’une fonction impaire :

Lemme 17. Si D est symétrique, toute fonction f : D — R peut s’écrire, de maniére unique, comme la
somme d'une fonction paire et d’une fonction impaire.

Preuve: Cherchons a écrire f(z) = p(x) +i(x), olt p(x) est paire et i(x) est impaire. On doit donc avoir
f(=x) = p(=2) +i(—x) = p(x) —i(z),
et donc i(z) et p(x) doivent satisfaire
f(z) = p(z) +i(x)
f(=x) = p(x) —i(z).
Ce petit systeme linéaire se résout facilement. Sa solution est unique, et donnée par

oy = LISy S0 S
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6.4. Périodicité

Exemple 6.10. Sur R, f(z) = e” n’est ni paire ni impaire, mais on peut quand-méme 1’écrire e” =
p(x) +i(z), ou

p(z) = # = cosh(x)
est paire, et
i(r) = ? = sinh(z)
est impaire. (Pour les fonctions hyperboliques, voir ici (lien vers la sectionm_fonctions_hyperboliqus

o

6.4 Périodicité
Définition 6.11. Soitt > 0; f : R — R est dite ¢-périodique si
flx+1t) = f(x) VreR.

Siil existe un ¢ > 0 minimal jouissant de cette propriété, on l'appelle période de f, et on le note
T>0.

Remarque 6.12. Si f est t-périodique, elle est aussi £2¢-périodique, +3t-périodique, etc. o
Exemple 6.13. f(z) = sin(z) est périodique, de période 7" = 27 :

'\ P mm—— -

f(x) = cos(z) est périodique, de période T" = 2. o
Exemple 6.14. f(x) = tan(x) (sur son domaine) est w-périodique car
sin(z +7)  —sin(x)

tan(z + ) = cos(z 1 ) = — cos(2) = tan(x).

<

Exemple 6.15. Considérons une fonction constante : f(z) = C. Onabien f(z+t) = f(x) pour tout
x et tout ¢ > 0, donc f est t-périodique pour tout ¢ > 0. Mais comme il n’existe pas de plus petit ¢
strictement positif avec cette propriété, la fonction n’a pas de “période” a proprement parler. ¢

Exemple 6.16. Considérons la fonction

fz) =

1 sizeQ,
0 sizeR\Q.

Montrons que si t € Q est un rationnel quelconque, alors f est t-périodique. En effet, prenons un
r € R quelconque. Si z € Q, alors f(z) = 1, et comme z +¢ € Q, on a aussi f(z +¢) = 1. Si
r € R\ Q, alors f(z) = 0, et comme z +¢ € R\ Q, on a aussi f(z + t) = 0. Dans tous les cas,

fla+1) = f(x).

Ici aussi, comme il n’existe pas de “plus petit rationnel ¢t > 0”, f n’a pas de période. o

Remarquons qu’en général, la somme de deux fonctions périodiques n’est pas forcément périodique
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6.5. Max/min, sup/inf de fonctions

Exemple 6.17. f(r) = sin(27x) est périodique, de période T; = 1, et g(z) = sin(v/27x) est pério-
dique, de période T, = /2. Par contre, f + g n’est pas périodique, puisque /2 étant irrationnel,
aucun multiple de 7, ne coincidera avec un multiple de 7}. o

On peut garantir que f + g est aussi périodique, mais en imposant une condition particuliere sur
TretTy:

Lemme 18. Soit f : R — R périodique, de période T, et g : R — R périodique, de période T,. Alors f + g
et f — g sont périodiques si % € Q.

o T g . T Co T
Preuve: Si T—J; € Q, il existe deux entiers p, g tels que T—’; = g. Ceci signifie que ¢T'y = pT;. Ceci implique que
si on définit t = ¢TY, alors pour tout z,

(fEg)z+t)=flz+t)Lg(@+t)= flz+qTr) £ g(x + qTy)

= f(@+qTy) + g(z + pTy)
=f(=) =g(z)
= (f+9)(),
ce qui implique que f + g est périodique. O

Exemple 6.18. La fonction f(z) = sin®*(z) a pour période T} = T, et g(x) = cos(3x) a pour période
T, = % . Comme
Ty _

T,

3
_€Q>
Y 2

on conclut par le lemme que f + g et f — g sont périodiques. Mais comment calculer les périodes
de ces fonctions?

‘Tss'w

x> 24T x4 AT x 43T
'1'5: WJ 5

N S —y

%

42T ?zr,-, PPCH de Ty o T%

En cherchant le plus petit multiple commun entre les périodes de f et g:

Ty, =ppmc(Ty,T,) = 2m.

6.5 Max/min, sup/inf de fonctions

6.5.1 Maximum, minimum

(ici, Video: v_fonctions_extrema_intro.mp4)

Remarque 6.19. Attention : dans la vidéo ci-dessus, préparée pour un autre cours, on mentionne
la notion de continuité, qui n’apparaitra que dans un chapitre ultérieur. o

Dans un probléme d’optimisation, il s’agit de savoir si une fonction possede, sur son domaine, des
points ou1 sa valeur est plus grande (ou plus petite) que partout ailleurs :
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6.5. Max/min, sup/inf de fonctions

Définition 6.20. Soit f : D — R. On dit que

* f posséde un maximum (global) si il existe z* € D tel que
f(x) < f(z*) VxeD.
On dit que le maximum de f est réalisé/atteint en z*, et on écrit

max f(z) = f(a").

z€D
% f posséde un minimum (global) si il existe z, € D tel que
f(z) = f(x,) VzeD.
On dit que le minimum de f est réalisé/atteint en z,, et on écrit

min f(z) = f(z.).

zeD

Remarque 6.21. On parle de maximum/minimum global parce qu’on introduira plus loin la no-
tion de maximum/minimum local. o

Informel 6.22. Attention : le point 2* (ou x.), s'il existe, doit étre dans le domaine de la fonction !

En général, 'existence d’'un minimum et d'un maximum n’est pas garantie; elle dépend de la
fonction mais aussi de son domaine.

Exemple 6.23.

f:[-1,2] =R

T 2
atteint son minimum en z, = 0, et son maximum en z* = 2 :

mox -

N hecssanncscsanssacsesead

- o\, 1

min

Mais si on modifie un peu son domaine, par exemple

f:-L2[—R

x> x2

alors cette fonction atteint aussi son minimum en z, = 0, mais elle ne posséde pas de maximum
(maintenant, le point z = 2 ne fait plus partie du domaine!). o
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6.5. Max/min, sup/inf de fonctions

Exemple 6.24.

g R—=R

T e

x2/2

atteint son maximumen z* =0 :

Or quel que soit = # 0, on peut toujours diminuer strictement la valeur de ¢=**/? en éloignant un
peu x de l'origine. Donc g n’a pas de minimum. o

Plus tard (ici (lien vers la section m_derivee_extremas_globaux_sur_a_b)), nous revien-
drons sur la recherche des minima/maxima d"une fonction.

6.5.2 Minorants et majorants

Définition 6.25. f : D — R est

* majorée si il existe M € R telle que f(z) < M Vx € D. On dit dans ce cas que M majore f.

<
>

* minorée si il existe m € R telle que f(x) > m Vz € D. On dit dans ce cas que m minore f.

Si f est a la fois majorée et minorée, elle est bornée.

Exemple 6.26. La fonction

f:R—=>R
22

2+ 1

X —

est minorée par m = 0 puisque f(x) > 0 pour tout = € R, et majorée par M = 1 puisque

24+0 2241
= <
f(z) 24+1  22+1

=1 VxelR.

o

Exemple 6.27. f(z) = x"’“"—_Ql, définie sur D = R\ {1} n’est pas majorée. Pour le vérifier, on doit
montrer que f dépasse n'importe quel seuil en au moins un point. En effet, choisissons un seuil,
disons M = 1000, et montrons que 1’on peut trouver un z € D tel que f(z) > 1000. Comme la
condition f(x) > 1000 est équivalente a 22 — 1000z + 1000 > 0, et comme cette derniére a un
discriminant A > 0, elle possede donc au moins une solution (différente de 1). Donc il existe au
moins un = € D tel que f(z) > 1000.

Mais on peut utiliser le méme argument pour une valeur quelconque de M. En effet, la condition
f(z) > M est équivalente a 2> — Mz + M > 0, dont le discriminant A = M? — 4M > (0 des que
M > 4. Ceci montre bien que f n’est pas majorée. o
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6.5. Max/min, sup/inf de fonctions

Une fois qu’une fonction est majorée (resp. minorée), on peut considérer le plus petit (resp. plus
grand) majorant (resp. minorant).

Définition 6.28. Soit f : D — R.

% Si f est majorée (sur D), la borne supérieure de f sur D est son plus petit majorant :

S f 5= e () = ol & @ € Dy = (L))

zeD

Si f n’est pas majorée sur D, on pose supp, f := +oo.

x Si f est minorée sur D, la borne inférieure de f sur D est son plus grand minorant :
irll)ff = in{)f(x) =inf{f(x) : € D} = inf(Im(f)).
S
Si f n’est pas minorée sur D, on pose infp f := —oo.

Sur la figure ci-dessous, les nombres M;, M et M; sont tous des majorants pour f sur son domaine
D. Le nombre M; étant le plus petit majorant (puisque tout nombre M’ < M; ne majore plus f),
c’est supp, f :

v

D
Remarque 6.29. « Si f: D — R atteint son maximum en z*, alors

sup f(x) = max f(x) = f(z").

z€D zeD

* Si f: D — R atteint son minimum en z,, alors

inf f(z) = min f(x) = f(x,).

zeD zeD

o

Informel 6.30. Par les propriétés des réels, une fonction bornée possede toujours une borne supé-
rieure et une borne inférieure! Par contre, comme on sait, elle peut ne pas atteindre son maximum
ou son minimum.

Exemple 6.31. La fonction

est majorée, car pour tout z €]0, 3],
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6.5. Max/min, sup/inf de fonctions

En fait, dans ce cas, ce majorant M/ = 9 n’est pas le plus petit, car
supf =6.
D

Remarquons par contre qu’il n’existe aucun z* €]0, 3] tel que f(z*) = 6, donc f n’a pas de maxi-
mum.
Remarquons ensuite que f est minorée car

flx)=2>—2>0"-3=-3.

Ici f atteint son minimum en z, = 3, f(z,) = —1:
=6
x"- 22K 1 Js;;Pte H ~
(] : m d‘.
f wexinwm |
o |
L - 56,
\—/ 3
Ingf=min fuy=--2L
Jo,3L x€Jo,3] 4
o
Exemple 6.32. La fonction
f:0,1] = R
T —
T
est minorée car pour tout = €0, 1],
1
fa)=->;=1=m
1
Mais elle n’est pas majorée, car pour tout M > 1 il existe x €]0, 1] tel que f(z) > M
(On peut par exemple prendre = = 5, pour lequel f(z) = 2M > M.) On a donc
sup f = +00.
10,1]
Par contre,
inf f =min f = f(1)=1.
inf f=min f = f(1)
o
123
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6.5. Max/min, sup/inf de fonctions

Exemple 6.33. Considérons encore g(z) = e *"/2, sur R.

max

On a vu que f atteint son maximum en z* = 0
supg = maxg = g(0) = 1,
R R
et on a vu qu’elle n’a pas de minimum. Pourtant, elle est minorée par 0 puisque ¢~**/2 > 0 pour
tout z. Montrons que 0 est en fait la plus grand minorant. En effet, si on prend un € > 0 quelconque

tixé, montrons qu’il existe au moins un réel z tel que 0 < e~%"/2 < ¢. En effet, on peut satisfaire
cette condition en prenant |z| > /2|log(¢)|. On conclut que

0 g —
intg=0,
o
Exemple 6.34. La fonction
h:R—R
x +— arctan(z)
ne posseéde ni minimum, ni maximum :
;3
/_»
y T
2
Malgré tout,
s s
h=+= infh=——.
suph =g, I 2
o

Lemme 19. Soit f : D - R, et A C D.
1) sup(—f) = —inf f
A A
2) sup(f +g) <sup f+supg
A A A
3) Sia>0et €R, alorssup(af + ) = a(supf) + 4
A A

4) Si AC B C D,alors sup f < sup f, et inf > inf f.
A B A B
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6.6. Convexité/concavité

6.6 Convexité/concavité

La convexité est une propriété géométrique associée au graphe d’une fonction. Commengons par
en donner une définition un peu informelle.

On dit qu'une fonction est convexe si tous les points situés sur le segment reliant deux points
quelconques de son graphe sont au-dessus du graphe,

\_/

et on dit qu’elle est concave si tous les points situés sur le segment reliant deux points quelconques
de son graphe sont au-dessous du graphe :

Remarque 6.35. f est concave si et seulement si — f est convexe. o
Pour définir analytiquement (plutot que géométriquement) la convexité, il faut que nous décri-
vions précisément le segment reliant deux points du graphe.

Soit donc f une fonction donnée, et soient z; < x, deux réels. On peut paramétrer toutes les posi-
tions intermédiaires (sur l'axe réel) entre z; et x5 a 'aide d'un parametre A € [0, 1], en définissant

r(A) =21+ AMag — 1) = (1 — N)ag + Axo.

On a z(0) = x1, (1) = x9, et toute autre valeur 0 < A < 1 représente un point intermédiaire :
r1 < () < z2. Maintenant, le point sur le segment reliant A = (21, f(z1)) a B = (x2, f(22)), situé

au-dessus de z()\), est a hauteur

y(A) = f(@1) + A(f(x2) = f21)) = (L= M) f (1) + Af(22)

T, x(A) x9

[o]
b
Il
=
=
o

ra
LJ
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6.6. Convexité/concavité

Le segment est donc entierement au-dessus du graphe si et seulement si

fl(N) <y(h) - vA€0,1],

Ceci mene a la définition analytique de convexité/concavité :

Définition 6.36. Soit I un intervalle, borné ou pas, et f : I — R.

* [ est convexe si pour toute paire z1, 22 € I,
% [ est concave si — f est convexe, c’est-a-dire si pour toute paire z1,z2 € I,

FUL=Nz1 4+ Azg) = (1= AN)f(21) + Af(2).

Exemple 6.37. f(z) = |z| est convexe. En effet, fixons deux points quelconques z; < z. Alors
pour tout A € [0, 1], par I'inégalité triangulaire,

F((1=N)zy + Aan) :|( )\xl—ir)\xg‘
< }( 371‘+’)\1’2‘
= (1 = A)|z1| + A|z2]
= (1= XN)f(z1) + Af(xo).

12l

AN

o
Exemple 6.38. f(z) = x? est convexe (sur tout R). En effet,
(1= Nzy + Azg) = (1= A) fz1) — Af(22)
=((1 =Xz + )\x2)2 — (1 = N)a? — A3
= — )\(1 — )\)(Zlfl — l‘2)2
——
>0
<0.
o

La définition de convexité donnée ci-dessus traduit la propriété géométrique énoncée en début
de section, mais elle peut étre difficile a mettre en oeuvre, méme dans des cas tres simples.

Exemple 6.39. La connaissance du graphe de la fonction exponentielle f(z) = ¢” indique qu’elle
est probablement convexe :
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6.6. Convexité/concavité

Mais montrer “a la main” que
e(ImMz1+Azs (1= X)e™ + \e™ Vo < x9,VA € ]0,1]

n’est pas simple. o

Il serait donc utile d’avoir un moyen plus direct d’obtenir la convexité. Nous y reviendrons apres
avoir les outils fournis par le calcul différentiel.
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