
Chapitre 6

Fonctions réelles

6.1 Introduction

Dans ce chapitre, on commence l’étude des fonctions réelles d’une variable. Les notions de base
relatives à ces fonctions (injectivité, surjectivité, bijectivité, graphe) se trouvent ici (lien vers la
section m_fonctions_generalites_fonctions_reelles).

Nous commencerons, dans ce chapitre, par décrire brièvement certaines propriétés particulières
qu’une fonction peut posséder (monotonie, parité, périodicité), et introduirons les notions de mi-
nimum/maximum ainsi que d’infimum/supremum.

Les notions de limite associées à une fonction réelle, puis celles de continuité, dérivabilité et intégra-
bilité feront l’objet de toute la suite du cours.

6.2 Monotonie

Une première propriété très particulière qu’une fonction peut posséder est celle d’être monotone.

Définition 6.1. I ⊂ R un intervalle et soit f : I → R.

1) f est croissante sur I si f(x1) ⩽ f(x2) pour tout x1, x2 ∈ I , x1 < x2.

2) f est strictement croissante sur I si f(x1) < f(x2) pour tout x1, x2 ∈ I , x1 < x2.

3) f est décroissante sur I si f(x1) ⩾ f(x2) pour tout x1, x2 ∈ I , x1 < x2.

4) f est strictement décroissante sur I si f(x1) > f(x2) pour tout x1, x2 ∈ I , x1 < x2.

Si f satisfait une de ces propriétés, elle est monotone.
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6.3. Parité

Exemple 6.2. La fonction f(x) = x2 est strictement croissante sur R+. En effet, si 0 ⩽ x1 < x2, alors
x2 − x1 > 0, et donc

f(x2)− f(x1) = x22 − x21 = (x2 − x1)︸ ︷︷ ︸
>0

(x2 + x1)︸ ︷︷ ︸
>0

> 0 ,

ce qui implique que f(x1) < f(x2). De même, on montre que f(x) = x2 est strictement décrois-
sante sur R−. ⋄
Exemple 6.3. Par notre définition, une fonction qui est constante sur I (c.à-d. qu’il existe un réel C
tel que f(x) = C pour tout x ∈ I) est à la fois croissante et décroissante sur I . ⋄

6.2.1 Variation

Étudier la variation d’une fonction, c’est trouver les intervalles sur lesquelles elle est croissante/décroissante.

L’étude de la variation d’une fonction donnée, basée uniquement sur la définition de cette fonction
(comme x2 dans l’exemple ci-dessus), peut être difficile. Le calcul différentiel, que nous développe-
rons plus loin, fournira un outil puissant permettant de faire cette analyse.

6.3 Parité

Une autre propriété qu’une fonction peut posséder est par rapport à son comportement vis-à-vis
de la transformation x 7→ −x.

Ci-dessous, on considère des fonctions dont le domaine D ⊂ R est symétrique c’est-à-dire que si
x ∈ D, alors −x ∈ D.

Définition 6.4. f : D → R est dite paire si

f(−x) = f(x) ∀x ∈ D .
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6.3. Parité

Si le point (x, y) = (x, f(x)) appartient au graphe de f , alors le point

(−x, f(−x)) = (−x, f(x)) = (−x, y)

appartient aussi au graphe de f . On conclut que le graphe d’une fonction paire est invariant sous
l’effet d’une réflexion par rapport à l’axe Oy.

Définition 6.5. f : D → R est dite impaire si

f(−x) = −f(x) ∀x ∈ D .

Si le point (x, y) = (x, f(x)) appartient au graphe, alors le point

(−x, f(−x)) = (−x,−f(x)) = (−x,−y)

appartient aussi graphe de f . Donc le graphe d’une fonction impaire est invariant sous une rotation
de 180o autour de l’origine :

Exemple 6.6. Décrivons l’exemple qui est à l’origine de la dénomination de fonction “paire” ou
“impaire”. Pour un entier p ∈ Z, la fonction

f(x) = xp

est

⋆ paire si p est pair,

⋆ impaire si p est impair.
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6.3. Parité

Remarquons que si p est négatif, alors 0 ne fait pas partie du domaine de f . ⋄

Exemple 6.7. Sur D = R, x 7→ cos(x) est paire,

et x 7→ sin(x) est impaire,

Sur D = R \ {π
2
+ kπ : k ∈ Z}, x 7→ tan(x) est impaire :
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6.3. Parité

En effet,

tan(−x) = sin(−x)
cos(−x)

=
− sin(x)

cos(x)
= − tan(x) .

⋄
Exemple 6.8. Montrons que la fonction f : R∗ → R définie par

f(x) =
sin(2x)

ex − e−x

est paire. En effet, pour tout x ∈ R∗,

f(−x) = sin(2(−x))
e−x − e−(−x) =

− sin(2x)

−(ex − e−x)
=

sin(2x)

ex − e−x
= f(x) .

⋄

Pour montrer qu’une fonction n’est pas paire (resp. pas impaire), il suffit de trouver un point x∗
de son domaine où f(−x∗) ̸= f(x∗) (resp. f(−x∗) ̸= −f(x∗)).
Exemple 6.9. Considérons, sur R, la fonction f(x) = x+1. On remarque que f(−1) = 0 et f(1) = 2,
et donc f(−1) ̸= f(1), et donc f n’est pas paire. Et comme f(−1) ̸= −f(1), f n’est pas impaire non
plus. ⋄

Une fonction, en général, n’a pas de raison d’être paire ou impaire ; pourtant toute fonction
contient un peu d’une fonction paire, et un peu d’une fonction impaire :

Lemme 17. Si D est symétrique, toute fonction f : D → R peut s’écrire, de manière unique, comme la
somme d’une fonction paire et d’une fonction impaire.

Preuve: Cherchons à écrire f(x) = p(x) + i(x), où p(x) est paire et i(x) est impaire. On doit donc avoir

f(−x) = p(−x) + i(−x) = p(x)− i(x) ,

et donc i(x) et p(x) doivent satisfaire

f(x) = p(x) + i(x)

f(−x) = p(x)− i(x) .

Ce petit système linéaire se résout facilement. Sa solution est unique, et donnée par

p(x) =
f(x) + f(−x)

2
, i(x) =

f(x)− f(−x)
2

.
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6.4. Périodicité

Exemple 6.10. Sur R, f(x) = ex n’est ni paire ni impaire, mais on peut quand-même l’écrire ex =
p(x) + i(x), où

p(x) =
ex + e−x

2
= cosh(x)

est paire, et

i(x) =
ex − e−x

2
= sinh(x)

est impaire. (Pour les fonctions hyperboliques, voir ici (lien vers la section m_fonctions_hyperboliques).)
⋄

6.4 Périodicité
Définition 6.11. Soit t > 0 ; f : R → R est dite t-périodique si

f(x+ t) = f(x) ∀x ∈ R .

Si il existe un t > 0 minimal jouissant de cette propriété, on l’appelle période de f , et on le note
T > 0.

Remarque 6.12. Si f est t-périodique, elle est aussi ±2t-périodique, ±3t-périodique, etc. ⋄
Exemple 6.13. f(x) = sin(x) est périodique, de période T = 2π :

f(x) = cos(x) est périodique, de période T = 2π. ⋄
Exemple 6.14. f(x) = tan(x) (sur son domaine) est π-périodique car

tan(x+ π) =
sin(x+ π)

cos(x+ π)
=

− sin(x)

− cos(x)
= tan(x) .

⋄
Exemple 6.15. Considérons une fonction constante : f(x) = C. On a bien f(x+ t) = f(x) pour tout
x et tout t > 0, donc f est t-périodique pour tout t > 0. Mais comme il n’existe pas de plus petit t
strictement positif avec cette propriété, la fonction n’a pas de “période” à proprement parler. ⋄
Exemple 6.16. Considérons la fonction

f(x) =

{
1 si x ∈ Q ,

0 si x ∈ R \Q .

Montrons que si t ∈ Q est un rationnel quelconque, alors f est t-périodique. En effet, prenons un
x ∈ R quelconque. Si x ∈ Q, alors f(x) = 1, et comme x + t ∈ Q, on a aussi f(x + t) = 1. Si
x ∈ R \ Q, alors f(x) = 0, et comme x + t ∈ R \ Q, on a aussi f(x + t) = 0. Dans tous les cas,
f(x+ t) = f(x).

Ici aussi, comme il n’existe pas de “plus petit rationnel t > 0”, f n’a pas de période. ⋄

Remarquons qu’en général, la somme de deux fonctions périodiques n’est pas forcément périodique !
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6.5. Max/min, sup/inf de fonctions

Exemple 6.17. f(x) = sin(2πx) est périodique, de période Tf = 1, et g(x) = sin(
√
2πx) est pério-

dique, de période Tg =
√
2. Par contre, f + g n’est pas périodique, puisque

√
2 étant irrationnel,

aucun multiple de Tg ne coïncidera avec un multiple de Tf . ⋄

On peut garantir que f + g est aussi périodique, mais en imposant une condition particulière sur
Tf et Tg :

Lemme 18. Soit f : R → R périodique, de période Tf , et g : R → R périodique, de période Tg. Alors f + g
et f − g sont périodiques si Tf

Tg
∈ Q.

Preuve: Si TfTg ∈ Q, il existe deux entiers p, q tels que Tf
Tg

= p
q . Ceci signifie que qTf = pTg. Ceci implique que

si on définit t̃ = qTf , alors pour tout x,

(f ± g)(x+ t̃) = f(x+ t̃)± g(x+ t̃) = f(x+ qTf )± g(x+ qTf )

= f(x+ qTf )︸ ︷︷ ︸
=f(x)

± g(x+ pTg)︸ ︷︷ ︸
=g(x)

= (f ± g)(x) ,

ce qui implique que f ± g est périodique.

Exemple 6.18. La fonction f(x) = sin2(x) a pour période Tf = π, et g(x) = cos(3x) a pour période
Tg =

2π
3

. Comme
Tf
Tg

=
3

2
∈ Q ,

on conclut par le lemme que f + g et f − g sont périodiques. Mais comment calculer les périodes
de ces fonctions?

En cherchant le plus petit multiple commun entre les périodes de f et g :

Tf±g = ppmc(Tf , Tg) = 2π .

⋄

6.5 Max/min, sup/inf de fonctions

6.5.1 Maximum, minimum

(ici, Video: v_fonctions_extrema_intro.mp4)

Remarque 6.19. Attention : dans la vidéo ci-dessus, préparée pour un autre cours, on mentionne
la notion de continuité, qui n’apparaîtra que dans un chapitre ultérieur. ⋄

Dans un problème d’optimisation, il s’agit de savoir si une fonction possède, sur son domaine, des
points où sa valeur est plus grande (ou plus petite) que partout ailleurs :
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6.5. Max/min, sup/inf de fonctions

Définition 6.20. Soit f : D → R. On dit que

⋆ f possède un maximum (global) si il existe x∗ ∈ D tel que

f(x) ⩽ f(x∗) ∀x ∈ D .

On dit que le maximum de f est réalisé/atteint en x∗, et on écrit

max
x∈D

f(x) = f(x∗) .

⋆ f possède un minimum (global) si il existe x∗ ∈ D tel que

f(x) ⩾ f(x∗) ∀x ∈ D .

On dit que le minimum de f est réalisé/atteint en x∗, et on écrit

min
x∈D

f(x) = f(x∗) .

Remarque 6.21. On parle de maximum/minimum global parce qu’on introduira plus loin la no-
tion de maximum/minimum local. ⋄

Informel 6.22. Attention : le point x∗ (ou x∗), s’il existe, doit être dans le domaine de la fonction !

En général, l’existence d’un minimum et d’un maximum n’est pas garantie ; elle dépend de la
fonction mais aussi de son domaine.
Exemple 6.23.

f : [−1, 2] → R
x 7→ x2

atteint son minimum en x∗ = 0, et son maximum en x∗ = 2 :

Mais si on modifie un peu son domaine, par exemple

f : [−1, 2[ → R
x 7→ x2,

alors cette fonction atteint aussi son minimum en x∗ = 0, mais elle ne possède pas de maximum
(maintenant, le point x = 2 ne fait plus partie du domaine !). ⋄
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6.5. Max/min, sup/inf de fonctions

Exemple 6.24.

g : R → R
x 7→ e−x

2/2

atteint son maximum en x∗ = 0 :

Or quel que soit x ̸= 0, on peut toujours diminuer strictement la valeur de e−x2/2 en éloignant un
peu x de l’origine. Donc g n’a pas de minimum. ⋄

Plus tard (ici (lien vers la section m_derivee_extremas_globaux_sur_a_b)), nous revien-
drons sur la recherche des minima/maxima d’une fonction.

6.5.2 Minorants et majorants

Définition 6.25. f : D → R est

⋆ majorée si il existe M ∈ R telle que f(x) ⩽M ∀x ∈ D. On dit dans ce cas que M majore f .

⋆ minorée si il existe m ∈ R telle que f(x) ⩾ m ∀x ∈ D. On dit dans ce cas que m minore f .

Si f est à la fois majorée et minorée, elle est bornée.

Exemple 6.26. La fonction

f : R → R

x 7→ x2

x2 + 1

est minorée par m = 0 puisque f(x) ⩾ 0 pour tout x ∈ R, et majorée par M = 1 puisque

f(x) =
x2 + 0

x2 + 1
<
x2 + 1

x2 + 1
= 1 ∀x ∈ R .

⋄
Exemple 6.27. f(x) = x2

x−1
, définie sur D = R \ {1} n’est pas majorée. Pour le vérifier, on doit

montrer que f dépasse n’importe quel seuil en au moins un point. En effet, choisissons un seuil,
disons M = 1000, et montrons que l’on peut trouver un x ∈ D tel que f(x) ⩾ 1000. Comme la
condition f(x) ⩾ 1000 est équivalente à x2 − 1000x + 1000 ⩾ 0, et comme cette dernière a un
discriminant ∆ ⩾ 0, elle possède donc au moins une solution (différente de 1). Donc il existe au
moins un x ∈ D tel que f(x) ⩾ 1000.

Mais on peut utiliser le même argument pour une valeur quelconque de M . En effet, la condition
f(x) ⩾ M est équivalente à x2 −Mx +M ⩾ 0, dont le discriminant ∆ = M2 − 4M ⩾ 0 dès que
M ⩾ 4. Ceci montre bien que f n’est pas majorée. ⋄
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6.5. Max/min, sup/inf de fonctions

Une fois qu’une fonction est majorée (resp. minorée), on peut considérer le plus petit (resp. plus
grand) majorant (resp. minorant).

Définition 6.28. Soit f : D → R.

⋆ Si f est majorée (sur D), la borne supérieure de f sur D est son plus petit majorant :

sup
D
f := sup

x∈D
f(x) = sup{f(x) : x ∈ D} = sup(Im(f)) .

Si f n’est pas majorée sur D, on pose supD f := +∞.

⋆ Si f est minorée sur D, la borne inférieure de f sur D est son plus grand minorant :

inf
D
f = inf

x∈D
f(x) = inf{f(x) : x ∈ D} = inf(Im(f)) .

Si f n’est pas minorée sur D, on pose infD f := −∞.

Sur la figure ci-dessous, les nombresM1,M2 etM3 sont tous des majorants pour f sur son domaine
D. Le nombre M3 étant le plus petit majorant (puisque tout nombre M ′ < M3 ne majore plus f ),
c’est supD f :

Remarque 6.29. ⋆ Si f : D → R atteint son maximum en x∗, alors

sup
x∈D

f(x) = max
x∈D

f(x) = f(x∗) .

⋆ Si f : D → R atteint son minimum en x∗, alors

inf
x∈D

f(x) = min
x∈D

f(x) = f(x∗) .

⋄

Informel 6.30. Par les propriétés des réels, une fonction bornée possède toujours une borne supé-
rieure et une borne inférieure ! Par contre, comme on sait, elle peut ne pas atteindre son maximum
ou son minimum.

Exemple 6.31. La fonction

f :]0, 3[ → R
x 7→ x2 − x

est majorée, car pour tout x ∈]0, 3[,

f(x) = x2 − x ⩽ 32 − 0 = 9
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6.5. Max/min, sup/inf de fonctions

En fait, dans ce cas, ce majorant M = 9 n’est pas le plus petit, car

sup
D
f = 6 .

Remarquons par contre qu’il n’existe aucun x∗ ∈]0, 3[ tel que f(x∗) = 6, donc f n’a pas de maxi-
mum.
Remarquons ensuite que f est minorée car

f(x) = x2 − x ⩾ 02 − 3 = −3 .

Ici f atteint son minimum en x∗ = 1
2
, f(x∗) = −1

4
:

⋄
Exemple 6.32. La fonction

f :]0, 1] → R

x 7→ 1

x

est minorée car pour tout x ∈]0, 1],

f(x) =
1

x
⩾

1

1
= 1 = m.

Mais elle n’est pas majorée, car pour tout M ⩾ 1 il existe x ∈]0, 1] tel que f(x) > M :

(On peut par exemple prendre x = 1
2M

, pour lequel f(x) = 2M > M .) On a donc

sup
]0,1]

f = +∞ .

Par contre,
inf
]0,1]

f = min
]0,1]

f = f(1) = 1 .

⋄
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6.5. Max/min, sup/inf de fonctions

Exemple 6.33. Considérons encore g(x) = e−x
2/2, sur R.

On a vu que f atteint son maximum en x∗ = 0

sup
R
g = max

R
g = g(0) = 1 ,

et on a vu qu’elle n’a pas de minimum. Pourtant, elle est minorée par 0 puisque e−x2/2 ⩾ 0 pour
tout x. Montrons que 0 est en fait la plus grand minorant. En effet, si on prend un ε > 0 quelconque
fixé, montrons qu’il existe au moins un réel x tel que 0 ⩽ e−x

2/2 ⩽ ε. En effet, on peut satisfaire
cette condition en prenant |x| >

√
2| log(ε)|. On conclut que

inf
R
g = 0 ,

⋄
Exemple 6.34. La fonction

h : R → R
x 7→ arctan(x)

ne possède ni minimum, ni maximum :

Malgré tout,
sup
R
h = +

π

2
, inf

R
h = −π

2
.

⋄

Lemme 19. Soit f : D → R, et A ⊂ D.

1) sup
A

(−f) = − inf
A
f

2) sup
A

(f + g) ⩽ sup
A
f + sup

A
g

3) Si α > 0 et β ∈ R, alors sup
A

(αf + β) = α
(
sup
A
f
)
+ β

4) Si A ⊂ B ⊂ D, alors sup
A
f ⩽ sup

B
f , et inf

A
⩾ inf

B
f .
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6.6. Convexité/concavité

6.6 Convexité/concavité

La convexité est une propriété géométrique associée au graphe d’une fonction. Commençons par
en donner une définition un peu informelle.

On dit qu’une fonction est convexe si tous les points situés sur le segment reliant deux points
quelconques de son graphe sont au-dessus du graphe,

et on dit qu’elle est concave si tous les points situés sur le segment reliant deux points quelconques
de son graphe sont au-dessous du graphe :

Remarque 6.35. f est concave si et seulement si −f est convexe. ⋄

Pour définir analytiquement (plutôt que géométriquement) la convexité, il faut que nous décri-
vions précisément le segment reliant deux points du graphe.

Soit donc f une fonction donnée, et soient x1 < x2 deux réels. On peut paramétrer toutes les posi-
tions intermédiaires (sur l’axe réel) entre x1 et x2 à l’aide d’un paramètre λ ∈ [0, 1], en définissant

x(λ) := x1 + λ(x2 − x1) = (1− λ)x1 + λx2 .

On a x(0) = x1, x(1) = x2, et toute autre valeur 0 < λ < 1 représente un point intermédiaire :
x1 < x(λ) < x2. Maintenant, le point sur le segment reliant A = (x1, f(x1)) à B = (x2, f(x2)), situé

au-dessus de x(λ), est à hauteur

y(λ) = f(x1) + λ(f(x2)− f(x1)) = (1− λ)f(x1) + λf(x2) .
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6.6. Convexité/concavité

Le segment est donc entièrement au-dessus du graphe si et seulement si

f(x(λ)) ⩽ y(λ) ∀λ ∈ [0, 1] ,

et il est entièrement au-dessous du graphe si et seulement si

f(x(λ)) ⩾ y(λ) ∀λ ∈ [0, 1] ,

Ceci mène à la définition analytique de convexité/concavité :

Définition 6.36. Soit I un intervalle, borné ou pas, et f : I → R.

⋆ f est convexe si pour toute paire x1, x2 ∈ I ,

f((1− λ)x1 + λx2) ⩽ (1− λ)f(x1) + λf(x2) .

⋆ f est concave si −f est convexe, c’est-à-dire si pour toute paire x1, x2 ∈ I ,

f((1− λ)x1 + λx2) ⩾ (1− λ)f(x1) + λf(x2) .

Exemple 6.37. f(x) = |x| est convexe. En effet, fixons deux points quelconques x1 < x2. Alors
pour tout λ ∈ [0, 1], par l’inégalité triangulaire,

f
(
(1− λ)x1 + λx2

)
=
∣∣(1− λ)x1 + λx2

∣∣
⩽
∣∣(1− λ)x1

∣∣+ ∣∣λx2∣∣
= (1− λ)|x1|+ λ|x2|
= (1− λ)f(x1) + λf(x2) .

⋄
Exemple 6.38. f(x) = x2 est convexe (sur tout R). En effet,

f((1− λ)x1 + λx2)− (1− λ)f(x1)− λf(x2)

=
(
(1− λ)x1 + λx2

)2 − (1− λ)x21 − λx22
= −λ(1− λ)︸ ︷︷ ︸

⩾0

(x1 − x2)
2

⩽ 0 .

⋄

La définition de convexité donnée ci-dessus traduit la propriété géométrique énoncée en début
de section, mais elle peut être difficile à mettre en oeuvre, même dans des cas très simples.
Exemple 6.39. La connaissance du graphe de la fonction exponentielle f(x) = ex indique qu’elle
est probablement convexe :
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6.6. Convexité/concavité

Mais montrer “à la main” que

e(1−λ)x1+λx2 ⩽ (1− λ)ex1 + λex2 ∀x1 < x2 ,∀λ ∈ [0, 1]

n’est pas simple. ⋄

Il serait donc utile d’avoir un moyen plus direct d’obtenir la convexité. Nous y reviendrons après
avoir les outils fournis par le calcul différentiel.
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