Chapitre 8

Fonctions continues

8.1 Définition de la continuité

La continuité est la condition de régularité la plus naturelle que 1’on puisse associer a une fonction
f en un point z, : elle impose que les valeurs de f(x), pour = dans un petit voisinage de z, soient
proches de la valeur de f(z,). Cette condition se formule rigoureusement en utilisant une limite :

Définition 8.1. Soit f : D — R, ou D C R est un ensemble ouvert, et soit zy € D. Si

lim f(x) = f(zo),

Tr—xTQ

on dit que f est continue en x. Si la limite n’existe pas, ou si elle existe mais est différente de
f(z0), on dit qu’elle est discontinue en z,.

Si une fonction est continue en tout point zy € D, on dira simplement qu’elle est continue sur D.

La continuité d'une fonction f en un point z, signifie que les valeurs de f(x) sont proches de
f(xo) pour tous les points x proches de z,. Trés exactement : pour tout ¢ > 0, il existe 6 > 0 tel que

[f(@) = f(zo)| <& désque [z —m| <9I

Sur 'animation suivante, choisir un z, et tester la continuité de f en z, en procédant comme suit :
1) Fixer une valeur de ¢ > 0 (petite),

2) Chercher un § > 0 adapté tel que la relation ci-dessus soit satisfaite. Remarquer que plus ¢
est pris petit, plus § doit aussi étre pris petit pour satisfaire cette contrainte.

0 =20.900...
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8.1. Définition de la continuité

Exemple 8.2. Etudions la continuité de la fonction

4—x six <3,
flx):=4¢3 siz=3,
x—2 siz > 3.
Montrons d’abord que f est continue en tout point =, # 3:

1) Sizg < 3, alors

lim f(z) = lim (V4 — ) = V4 — 29 = f(z0).
Tr—xQ Tr—T0
2) Sizy > 3, alors
wli_gglo f(z) = xh—{?o(x —2)=x0—2= f(xo).
Considérons ensuite le cas xy = 3. D’une part, en ce point la fonction prend la valeur f(3) = 3/2,
mais d’autre part

lim f(z)= lim (vV4—2)=1,

T3~ T3~
li = li —-2)=1
g )= o2 =1

ce qui implique 'existence de lim,_,3 f(x), mais

lim f(x) # f(3),

z—3

donc f est discontinue en xy = 3. o

e =10.700...

L'exemple précédent montre comme il est facile de créer une discontinuité en un point z, : en
définissant la fonction différemment de part et d’autre de x.

Informel 8.3. Les fonctions qui sont continues en tout point de leur domaine de définition, sur les-
quelles nous reviendrons, jouent un role particulier en analyse, car elle jouissent de certaines
propriétés remarquables. Du point de vue graphique, le graphe d"une telle fonction ne présente
aucun saut, et peut théoriquement étre tracé “sans lever le crayon”.
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8.1.1 Des fonctions avec beaucoup de discontinuités

En vue de I'exemple du début de cette section, on voit qu'il est facile de créer des fonctions possé-
dant une, deux ou plusieurs discontinuités. On peut évidemment créer des fonctions possédant
une infinité de discontinuités (par exemple, la valeur entiére = — |z est discontinue en tout point
ro € Z), mais il existe des fonctions qui ne sont continues nulle part...

Exemple 8.4. Considérons la fonction

_J1 sizeqQ,
f@y_{o siz €R\Q

f(z)

L ]

L
T

rA
LdJ

(Un ordinateur ne peut évidemment pas représenter le graphe d’une telle fonction.)

Montrons que f est discontinue en tout zy € R. En effet, pour un z; € R quelconque, il existe
toujours une suite d’irrationnels i,, — z, pour laquelle

lim f(in) =0,

n—oo

et une suite de rationnels r, — x(, pour laquelle

lim f(r,)=1.

n—o0

Ceci implique que f(x) n’a pas de limite lorsque © — =z, et donc que f n’est pas continue en .
Comme ce raisonnement vaut pour tout z, f est discontinue partout. o

En bas de page, on donne un exemple d'une fonction qui est discontinue “presque partout”, dans
le sens suivant : continue en tout point irrationnel, discontinue en tout point rationnel.

8.1.2 Continuité des fonctions élémentaires
Lemme 22. Les fonctions qui sont des sommes, produits, quotients (lorsqu’ils sont bien définis) et compo-
sées de fonctions continues sont continues.

Preuve: Ces propriétés suivent directement des propriétés de la limite. Par exemple, si f et g sont continues
en x, alors f + g est aussi continue en xy puisque

lim (f +g)(z) = lim f(z)+ lim g(z)

= f(zo) + g(x0)
= (f+g)(wo0)

La plupart des fonctions fondamentales de I’analyse sont continues (sur leur domaine).

* Tout polynéme x — P(x) est continu sur R.
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* Les fonctions trigonométriques sin(z) et cos(z) sont continues sur R; tan(z) est continue
sur R\ {§ +k7|k € Z},

* Pour toute base a > 0, '’exponentielle a” est continue sur R. (En particulier, z — e* est
continue.)

* Pour toute base a > 0, la fonction logarithme log,(z) est continue sur R*. (En particulier,
x +— log(z) est continue.)

8.1.3 Continuité latérale

Introduisons une notion de continuité un peu plus faible :

Définition 8.5. 1) Soit f une fonction définie en x, et dans un voisinage a gauche de z,. On dit
que f est continue a gauche en z si lim f(z) = f(zo).
=T
2) Soit f une fonction définie en x, et dans un voisinage a droite de z,. On dit que f est conti-

nue a droite en z, si lim+ f(z) = f(xo).
ZL‘-}ZL'O

Une fonction continue a droite, mais pas a gauche, en z :

Plx)
£ (xo)e
} >
Xo = X

Exemple 8.6. Etudions la continuité de la fonction

Vr+9-3
VETIZY Go<z< z,
T
flx)=41/6 siz =0,
il si—I<r<0
—-I<ux
sin(3z) 3 ’
au point zy = 0. Puisque f est définie différemment de part et d’autre de 0, on étudie les limites
latérales :
lim f(z) = li vr+9-—3 I 1 1
111 r)= I1mm — = IIlm — = —
z—07t z—0t x =0t v/ +94+ 3 6’
2+ 1 z+1 1
li = li = lim ——— =-.
S = 0 e N mE 3
Puisque f(0) = ¢, on conclut qu’en 0, f est continue a droite mais discontinue a gauche. o

Théoréme 8.7. Soit f définie en x et dans son voisinage. Alors f est continue en x si et seulement si elle
est continue a gauche et a droite en x.

152 NumChap: chap-fonctions-continues, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

8.2. Prolongement par continuité

Preuve: Est une conséquence de I’équivalence entre limite et égalité des limites latérales. O
Attention : ne manquez pas de lire 'exemple tout en fin de section!

Exemple 8.8. A Considérons la fonction f : ]0, 1[ — R définie par

0 six estirrationnel,
; siz =2 (irréductible).

Par exemple,
=3 =35 [fE=I&H=1u

Le graphe de f ressemble a quelque chose comme ca :

Nous allons montrer que f est continue en tout point irrationnel, discontinue en tout point rationnel.

Clairement, f est discontinue en tout z, rationnel non-nul. En effet, on peut toujours trouver une
suite d’irrationnels i,, — x(, pour laquelle

Tim f(io) =0 # f(xo)
Avant de poursuivre, définissons pour chaque entier k& > 1 1’ensemble
Q(k) := {E|irréductible, p € Z} C Q.
Remarquons que la distance entre deux points de Q(k) est d’au moins ;. Par définition, si z €

Q(k), alors f(z) = 1.

Fixons maintenant un irrationnel z,, et montrons que f est continue en z,, c’est-a-dire que

lim f(z) = f(zo) = 0.

Tr—xQ

Pour cela, fixons ¢ > 0 et considérons un entier k > 1 tel que + < e. Soit § > 0, assez petit pour
que les rationnels contenus dans [z — 0, 7y + J] ne soient que des rationnels des ensembles Q(%'),
k' > k.

x Siz estirrationnel, alors f(x) = 0.

* Si x est rationnel, alors il appartient nécessairement a un des ensemble Q(£’), ' > k, ce qui

implique |f(z)| = & < 1 <e.

Dans les deux cas, on a | f(x)| < € pour tout x € [z — J, 20 + §]. o

8.2 Prolongement par continuité

Informel 8.9. Supposons qu'une fonction ait un “trou” dans son domaine, au point z,. Sil’on veut
étendre le domaine de cette fonction, de fagon a ce que son domaine contienne aussi =, comment
doit-on définir f(zg)?
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Soit I un intervalle, zy € I, et soit I’ := I \ {z}. On obtient donc / en rajoutant a I’ le point z.
Soit maintenant une fonction f : I’ = R, c’est-a-dire définie sur I a 'exception du point .

Si on veut étendre le domaine de f a tout /, il faut choisir une valeur pour f(z). Ce choix est a
priori arbitraire, mais une facon naturelle de le faire est de donner a f, au point z(, une valeur qui
est semblable a celles qu’elle prend dans le voisinage de x.

Plus précisément : si le nombre
L = lim f(z)

T—T0

existe, il est naturel de 1'utiliser pour définir la valeur de f au point z; :

f(l'o) =1L.

Cette procédure est surtout utilisée dans le cas ot f est, au départ, continue en tout point de /' :

1

L J

I 2,
Si la limite L existe, la nouvelle fonction
f:I>R
N f(z)  siz# o,
L siz=uxg.

est continue en tout point de I ; elle s’appelle la prolongée de f par continuité :

1

Informel 8.10. Du point de vue du graphe, on est parti d'une fonction qui était déja continue en
tous les points de I’, et 'existence de L a permis de simplement “boucher le trou”, pour rendre la
fonction continue sur tout /.

Exemple 8.11. Considérons la fonction f : R\ {3} — R, définie par

fa) e {\/4—93 siz <3,

Tr— 2 siz > 3.

On a montré précédemment que f est continue en tout point z # 3. On a aussi calculé

lim f(z) =1.

r—3
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On peut donc prolonger cette fonction par continuité a tout R, en définissant

4—x sizx<3,
flx):=<1 six =3,
r— 2 siz>3.

Exemple 8.12. Considérons f : R* — R, définie par

_ sin(x) .

fx) =

X

, 1)

—~ =
N N i

Clairement, f est continue en tout point x5 € R*. On sait que

lim f(z) = lim =1,

x—0 x—0 €T

donc f peut étre prolongée par continuité a tout R. Sa prolongée est donnée par

- sin(@)
f(x):{ = siz#0,

1 siz=0.

Informel 8.13. On ne peut pas toujours, comme dans les deux exemples précédents, “boucher le
trou” pour rendre une fonction continue partout :

Exemple 8.14. Soit f : R* — R définie par

I
i
‘
>
o

Alors f est continue en tout point de R,, Mais comme lim,_, f(x) n’existe pas (puisque lim,_,o- f(z) =
0 est différent de lim, o+ f(z) = 1), cette fonction ne peut pas étre prolongée par continuité. o
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8.3 Continuité sur un intervalle compact

Une fonction continue définie sur un intervalle compact, c’est-a-dire fermé et borné (donc du
type [a, b]), possede plusieurs propriétés remarquables. Commencons par définir ce que signifie
étre continue sur un intervalle fermé et borné :

Définition 8.15. Une fonction f : [a, b] — R est continue si
= elle est continue en tout z( €]a, b,
* elle est continue a droite en 2y = a,

% elle est continue a gauche en z; = b.

Informel 8.16. Une fonction continue sur [a, b] est donc une fonction dont le graphe est une courbe
“tragable sans lever le crayon”, reliant le point A = (a, f(a)) au point B = (b, f(b)) :

?

sesscssssre

L 2

P - .
o +-----

Une premiére propriété importante est qu'une fonction continue sur un compact ne peut pas
prendre de valeurs arbitrairement grandes :

Théoreme 8.17. Soit f : [a,b] — R continue. Alors f est bornée.

Preuve: Par I'absurde, supposons que f n’est pas majorée. Alors pour tout n > 0 il existe z,, € [a, b] tel que
f(zyn) > n, etdonc f(z,) — +oc.

Par construction, (xy,), est bornée. Par le Théoreme de Bolzano-Weierstrass, il existe une sous-suite (z,, )
et z* € [a, b] telle que limy,_, ,, = 2*. Mais donc, puisque f est continue, elle est en particulier continue
en z*, et donc

f(z") = lim f(x,,)= nh_)rgcf(:vn) =+o0,

k—o0

ce qui est impossible (puisque f(z*) doit étre un nombre fini!). Donc f est majorée.

En adaptant I’argument, on montre que f est minorée. O

Une deuxiéme propriété, tres utile dans les problémes d’optimisation : si une fonction est continue
sur un compact, elle atteint toujours son minimum et son maximum :

Théoreme 8.18. Soit f : [a,b] — R continue. Alors f atteint son minimum et son maximum : il existe x.,
et x* € [a,b] tels que

min f(z) = f(z.),  max f(z) = f(z").

z€[a,b] z€[a,b]
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4 f10) max $x)
xe¢[a,b]

min
xela,b

.Jffx)é

-Z* b b

Preuve: Par le théoreme précédent, f est bornée, et donc

s:= sup f(x)
z€[a,b]

est bien défini. Nous allons montrer qu’il existe un point z* € [a, b] oit f prend cette valeur s.

Considérons la suite ¢,, := % Par définition du supremum, pour tout n il existe z,, € [a, b] tel que
3_5n<f($n) <s.

Par construction, f(x,) — s lorsque n — oo. Mais, comme (z,), est bornée (elle vit dans [a,b]!), le
Théoreme de Bolzano-Weierstrass garantit qu’il existe une sous suite (z,,)r, et un z* € [a,b], tels que
limg_yo0 Ty, = ™.

Calculons f(x*). Puisque f est continue sur [a, b], elle est en particulier continue en z*. Comme z,, — z*,
on a donc

f(z*) = lm f(zy,).

k—o0

Mais, puisque (f(xn, ))r est une sous-suite de (f(xy,))n, elle converge vers la méme limite :

f(x*) = lim f(xnk) - ,}E{,lof(xn) =Ss.

k—o0
On a donc
f(@*) = sup f(z)= max f(z).
€[a,b] z€|a,b]
On procede de méme pour la construction d"un point z, ot f atteint son minimum. O

Informel 8.19. Le théoreme dit que z, et z* existent toujours, mais il ne dit pas comment les
trouver! (D’ailleurs en général, on ne sait pas les trouver.)

Exemple 8.20. Considérons f : [0, 2] — R, définie par
f(z) = 2®sin(2? + cos(z)) .

Cette fonction est continue (c’est un produit de % avec une composée de fonctions continues),
donc par le théoreme, il existe z, € [0,2] et z* € [0, 2] tels que

f(z,) = xrél[(i]g] f(x), f(x") = max f(x).

<

Pour souligner I'importance des hypotheses dans le théoreme ci-dessus, voyons comme le résultat
n’est plus vrai en général lorsqu'une des hypotheéses n’est pas vérifiée :
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Exemple 8.21. (Une fonction sur un intervalle compact, mais qui n’est pas continue en un point.)
Soit f : [0,1] — R définie par

N

<

N

=
=
Il
o
»
—
o= ] o
I

T
1
27
r<1.

A\
N

rz—1 si

Cette fonction est continue partout sauf en 3, et elle ne posséde ni de maximum ni de minimum :
o

2%

pas de max

pas de wmin

Exemple 8.22. (Une fonction continue, sur un intervalle borné mais pas fermé.) Considérons

1

f<x):1——132, sur]—l,l[.

Alors f possede un minimum, atteint en z, = 0, mais pas de maximum : o

pos de max

Min

v

&

]
[TOE BEE
+*
'S

Exemple 8.23. (Une fonction continue sur un intervalle fermé mais pas borné.) Soit
1
flz)=—, sur [1, +o0].
Alors f possede un maximum, atteint sur le bord en 2* = 1, mais pas de minimum :

£(x)

max
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8.4 Le théoreme de la valeur intermédiaire
(ici, Video: v_ fonctions_continuite_ TVI.mp4)

Une propriété essentielle des fonctions continues sur un intervalle compact :

Théoreme 8.24. (Théoreme de la valeur intermédiaire) Soit f : [a,b] — R continue. Si f(a) < f(b),
alors pour toute valeur intermédiaire h, f(a) < h < f(b), il existe ¢ €|a, b[ tel que f(c) = h. (Affirmation
semblable dans le cas ot f(a) > f(b).)

f(b)

o e
o

Le résultat se démontre en utilisant un Algorithme de bissection (qui est, en soi, tout aussi im-
portant que le théoréeme lui-méme) :
Preuve: L'idée est de construire deux suites convergentes (a,)n>0 et (b,)n>0. Celles-ci sont construites par
récurrence :

1) Posons ag := a, by := b. Par définition, f(ag) < h < f(bp).

2) Pour n > 0, supposons que a,, et b, ont déja été définis, et que f(a,) < h < f(by). Considérons alors

le point milieu de a,, et by, :
an + by,

Cp = .

2

* Si f(cn) < h, on pose apt1 = Cp, bpt1 1= by.
* Si f(cn) > h, on pose apt1 = ap, bpt1 = c¢y,. Par définition de a,4; et byy1, f(ant1) < b <
f (bn+1)-
Maintenant que les suites (ay,)n>0 et (bn)n>0 ont été construites, regardons-les de plus pres :

* A chaque étape de l'algorithme ci-dessus, a,1 est soit a,, soit ¢,. Comme ¢, > ay,, ceci implique
que dans tous les cas, an1+1 > ay. De plus, chaque a,, est inférieur a b. Par conséquent, (ay)n>0 est
croissante et majorée, donc elle converge : notons sa limite

c_ = lim a,.
n—oo

* A chaque étape de l'algorithme ci-dessus, b,,11 est soit by, soit ¢,,. Comme ¢, < b,, ceci implique
que dans tous les cas, b, 41 < by,. De plus, chaque b,, est supérieur a a. Par conséquent, (b,,),>0 est
décroissante et minorée, donc elle converge : notons sa limite

c4 = lim by, .
n—oo

* Comme a chaque étape exactement un des points devient le point milieu, on a
1
Zlan —by| = =

2
Par I'inégalité triangulaire, on a donc que

’an-i-l - bn—i—l‘ = ontl |a - b| —0.
le— —cq] <lem —ap| + |an — by| + |bn, — c4| = 0,

ce qui implique que c_ = ¢4, que I’on peut donc écrire simplement c.
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8.4. Le théoréme de la valeur intermédiaire

On utilise maintenant de manieére essentielle la continuité de f :

1) D’une part, comme a,, — c_ et f(a,) < h pour tout n, on a que

F(e) = fleo) = lim f(an) < h.

n—oo

2) D’autre part, comme b,, — c4 et f(b,) > h pour tout n, on a que

J(e) = f(es) = lim f(ba) > h.

n—o0

Ceci implique bien que f(c) = h. O

8.4.1 Application : existence de solutions pour des équations non-linéaires

Voyons une premiere conséquence du théoréeme de la valeur intermédiaire, que l'on a déja ren-
contrée. (Dans le chapitre sur les nombres complexes, on a vu ce résultat comme une conséquence
du Théoreme Fondamental de 1’Algebre.)

Corollaire 9. (Existence de racines pour polynomes réels de degré impair) Un polynome a coefficients réels
de degré impair possede au moins une racine réelle.
Preuve: Considérons un polynéme de degré impair, a coefficients réels :

P(z) = ap + a1z + agz® + ... a,z"”

ou n est impair, et a,, # 0. Rappelons que ce polyndme est une fonction continue de la variable x.

Sans perte de généralité, supposons que a,, > 0. Comme n est impair, on a

lim P(z) = +o0, lim P(z) = —0.

Tr—+00 T——00

Il existe donc un réel N, < 0 tel que P(N,) < 0, et un réel N, > 0 tel que P(N) > 0.

hea
Na O\

-~
.
-"--'

-

En appliquant le Théoreme de la valeur intermédiaire sur l'intervalle [N,, N], avec h = 0, on conclut : il
existe ¢ €] N, Np| tel que P(c) = 0. O

Exemple 8.25. Le polyndme
P(z)=2"—m +v22 -1

est de degré impair. Par le corollaire, il posséde au moins une racine. o

Le théoreme de la valeur intermédiaire permet aussi de montrer I’existence de solutions pour des
équations non-linéaires, pas forcément polynomiales :
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Exemple 8.26. Montrons que 1’équation non-linéaire
cos(z) =z
posséde au moins une solution : Pour ce faire, définissons
f(z) :=cos(x) — z,
que I'on consideére sur l'intervalle fermé et borné [0, 7]. On a d’une part que
f(0)=1-0=1>0,
et d’autre part que

f(5)=0-%5<0.

2
Dong, par le Théoréme de la valeur intermédiaire, il existe ¢ €]0, 7| tel que f(c) = 0, ce qui est
équivalent a cos(c) = c.

8.4.2 Application : sur ’ensemble image d'une fonction continue

Théoreme 8.27. Soit f : [a,b] — R continue. Alors son ensemble image Im( f) est un intervalle fermé et
borné, donné par

Im(f) = [min f(z), max f(z)]

x€[a,b] x€|a,b]

 Pex)

Q

o~1-

Preuve: On sait que f atteint son minimum et son maximum :

f(a¥) = max f(z),  f(z.) = min f(z).

€la,b] z€[a,b)

Puisque f(z«) < f(z) < f(z*) pour tout = € [a,b], on a

Im(f) C [f(zs), f(27)].

Siz, = x*, alors f est constante et donc Im( f) ne contient qu'un point (qu’on peut considérer comme un
intervalle fermé et borné). Sinon, on peut supposer sans perte de généralité que z, < x*.

En choisissant un h € [f(z+), f(2*)] quelconque, le théoreme de la valeur intermédiaire garantit qu’il existe
un ¢ €]z, x*[ tel que f(c) = h. Par conséquent, h € Im(f), et donc

[f (), f(2%)] € Tn(f).

On a donc montré que Im(f) = [f(x«), f(«*)], qui est bien un intervalle fermé et borné. O
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8.5 Continuité et calcul de limites

On a déja vu que si une fonction f est continue en un point z,, alors pour toute suite (z,,) tendant

Vers .,

n—

Voyons maintenant un résultat analogue, mais dans lequel la suite z,, (dont la variable est 1’entier
n) est remplacée par une fonction g(x) (dont la variable est un réel z) :

Théoréme 8.28. Soit f(y) définie dans le voisinage d'un point y, = L, et continue en ce point y.
1) Si g est définie dans un voisinage de xo, et si lim g(z) = yo, alors
T—rT0

lim f(g(z)) = f(yo)

T—T0

2) Si g est définie sur un domaine contenant un intervalle de la forme |a,+oo|, et si lim g(x) = yo,

T—00

alors

lim f(g(x)) = f (%) -

T—r00

foq

—_—
\ ?(3"‘“ — .f(l‘.)

x-
g A ,4

éfl)——-’ 3.0

Preuve: On démontre la premiere affirmation.

Fixons ¢ > 0. On procede en deux étapes :
x Puisque f est continue en yy, il existe n > 0 tel que |f(y) — f(yo)| < e désque 0 < |y — yo| < 0.
* Ensuite, puisque lim,_,,, g(z) = o, il existe § > 0 tel que |g(z) — yo| < n dés que 0 < |z — xo| < 0.

Prenons donc un z tel que 0 < |z — x| < ¢. En utilisant la premiére étape avec y = g(x), on a

[f(g(2)) = f(yo)l = 1f(y) = Flwo)| <e.

Ceci montre bien que lim,_,, f(g(z)) = f(yo).

La deuxieme affirmation se démontre de la méme facon. O

Informel 8.29. En d’autres termes, lorsqu’on étudie une limite d'une composée f(g(z)), dans
laquelle on sait que g(z) — yo, et que f est continue au point y,, alors on peut “rentrer la limite
dans f”:

lim f(g(z)) = f(limg(z)) = f(yo)-

Exemple 8.30. Considérons la limite
x

lim )

1 62 NumChap: chap-fonctions-continues, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

8.5. Continuité et calcul de limites

On voit ici que g(z) = %7 — 1lorsque x — oco. Montrons que f(r) = /= est continue en yp = 1.
En effet, puisque

_ [z =1
[f@) = F() = Ve = V1| = \/—+1\|~”E—1I>

on a bien que lim,_,; f(z) = f(1).

On peut donc “rentrer la limite dans f”

xﬁ\oo \/ xaoo T +

—V1i=1.
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