
Chapitre 8

Fonctions continues

8.1 Définition de la continuité

La continuité est la condition de régularité la plus naturelle que l’on puisse associer à une fonction
f en un point x0 : elle impose que les valeurs de f(x), pour x dans un petit voisinage de x0 soient
proches de la valeur de f(x0). Cette condition se formule rigoureusement en utilisant une limite :

Définition 8.1. Soit f : D 7→ R, où D ⊂ R est un ensemble ouvert, et soit x0 ∈ D. Si

lim
x→x0

f(x) = f(x0) ,

on dit que f est continue en x0. Si la limite n’existe pas, ou si elle existe mais est différente de
f(x0), on dit qu’elle est discontinue en x0.

Si une fonction est continue en tout point x0 ∈ D, on dira simplement qu’elle est continue sur D.

La continuité d’une fonction f en un point x0 signifie que les valeurs de f(x) sont proches de
f(x0) pour tous les points x proches de x0. Très exactement : pour tout ε > 0, il existe δ > 0 tel que

|f(x)− f(x0)| ⩽ ε dès que |x− x0| ⩽ δ .

Sur l’animation suivante, choisir un x0 et tester la continuité de f en x0, en procédant comme suit :
1) Fixer une valeur de ε > 0 (petite),
2) Chercher un δ > 0 adapté tel que la relation ci-dessus soit satisfaite. Remarquer que plus ε

est pris petit, plus δ doit aussi être pris petit pour satisfaire cette contrainte.
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8.1. Définition de la continuité

Exemple 8.2. Étudions la continuité de la fonction

f(x) :=


√
4− x si x < 3 ,

3
2

si x = 3 ,

x− 2 si x > 3 .

Montrons d’abord que f est continue en tout point x0 ̸= 3 :

1) Si x0 < 3, alors
lim
x→x0

f(x) = lim
x→x0

(
√
4− x) =

√
4− x0 = f(x0) .

2) Si x0 > 3, alors
lim
x→x0

f(x) = lim
x→x0

(x− 2) = x0 − 2 = f(x0) .

Considérons ensuite le cas x0 = 3. D’une part, en ce point la fonction prend la valeur f(3) = 3/2,
mais d’autre part

lim
x→3−

f(x) = lim
x→3−

(
√
4− x) = 1 ,

lim
x→3+

f(x) = lim
x→3+

(x− 2) = 1 ,

ce qui implique l’existence de limx→3 f(x), mais

lim
x→3

f(x) ̸= f(3) ,

donc f est discontinue en x0 = 3. ⋄

L’exemple précédent montre comme il est facile de créer une discontinuité en un point x0 : en
définissant la fonction différemment de part et d’autre de x0.

Informel 8.3. Les fonctions qui sont continues en tout point de leur domaine de définition, sur les-
quelles nous reviendrons, jouent un rôle particulier en analyse, car elle jouissent de certaines
propriétés remarquables. Du point de vue graphique, le graphe d’une telle fonction ne présente
aucun saut, et peut théoriquement être tracé “sans lever le crayon”.
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8.1. Définition de la continuité

8.1.1 Des fonctions avec beaucoup de discontinuités

En vue de l’exemple du début de cette section, on voit qu’il est facile de créer des fonctions possé-
dant une, deux ou plusieurs discontinuités. On peut évidemment créer des fonctions possédant
une infinité de discontinuités (par exemple, la valeur entière x 7→ ⌊x⌋ est discontinue en tout point
x0 ∈ Z), mais il existe des fonctions qui ne sont continues nulle part...
Exemple 8.4. Considérons la fonction

f(x) :=

{
1 si x ∈ Q ,

0 si x ∈ R \Q

(Un ordinateur ne peut évidemment pas représenter le graphe d’une telle fonction.)

Montrons que f est discontinue en tout x0 ∈ R. En effet, pour un x0 ∈ R quelconque, il existe
toujours une suite d’irrationnels in → x0, pour laquelle

lim
n→∞

f(in) = 0 ,

et une suite de rationnels rn → x0, pour laquelle

lim
n→∞

f(rn) = 1 .

Ceci implique que f(x) n’a pas de limite lorsque x → x0, et donc que f n’est pas continue en x0.
Comme ce raisonnement vaut pour tout x0, f est discontinue partout. ⋄

En bas de page, on donne un exemple d’une fonction qui est discontinue “presque partout”, dans
le sens suivant : continue en tout point irrationnel, discontinue en tout point rationnel.

8.1.2 Continuité des fonctions élémentaires
Lemme 22. Les fonctions qui sont des sommes, produits, quotients (lorsqu’ils sont bien définis) et compo-
sées de fonctions continues sont continues.

Preuve: Ces propriétés suivent directement des propriétés de la limite. Par exemple, si f et g sont continues
en x0, alors f + g est aussi continue en x0 puisque

lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + lim
x→x0

g(x)

= f(x0) + g(x0)

= (f + g)(x0)

La plupart des fonctions fondamentales de l’analyse sont continues (sur leur domaine).

⋆ Tout polynôme x 7→ P (x) est continu sur R.
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8.1. Définition de la continuité

⋆ Les fonctions trigonométriques sin(x) et cos(x) sont continues sur R ; tan(x) est continue
sur R \ {π

2
+ kπ | k ∈ Z},

⋆ Pour toute base a > 0, l’exponentielle ax est continue sur R. (En particulier, x 7→ ex est
continue.)

⋆ Pour toute base a > 0, la fonction logarithme loga(x) est continue sur R∗
+. (En particulier,

x 7→ log(x) est continue.)

8.1.3 Continuité latérale

Introduisons une notion de continuité un peu plus faible :

Définition 8.5. 1) Soit f une fonction définie en x0 et dans un voisinage à gauche de x0. On dit
que f est continue à gauche en x0 si lim

x→x−0

f(x) = f(x0).

2) Soit f une fonction définie en x0 et dans un voisinage à droite de x0. On dit que f est conti-
nue à droite en x0 si lim

x→x+0

f(x) = f(x0).

Une fonction continue à droite, mais pas à gauche, en x0 :

Exemple 8.6. Étudions la continuité de la fonction

f(x) =



√
x+ 9− 3

x
si 0 < x < π

3
,

1/6 si x = 0 ,
x2 + x

sin(3x)
si − π

3
< x < 0 ,

au point x0 = 0. Puisque f est définie différemment de part et d’autre de 0, on étudie les limites
latérales :

lim
x→0+

f(x) = lim
x→0+

√
x+ 9− 3

x
= lim

x→0+

1√
x+ 9 + 3

=
1

6
,

lim
x→0−

f(x) = lim
x→0−

x2 + x

sin(3x)
= lim

x→0−

1
sin(3x)

3x

x+ 1

3
=

1

3
.

Puisque f(0) = 1
6
, on conclut qu’en 0, f est continue à droite mais discontinue à gauche. ⋄

Théorème 8.7. Soit f définie en x0 et dans son voisinage. Alors f est continue en x0 si et seulement si elle
est continue à gauche et à droite en x0.
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8.2. Prolongement par continuité

Preuve: Est une conséquence de l’équivalence entre limite et égalité des limites latérales.

Attention : ne manquez pas de lire l’exemple tout en fin de section !
Exemple 8.8. Considérons la fonction f : ]0, 1[ → R définie par

f(x) :=

{
0 si x est irrationnel,
1
q

si x = p
q

(irréductible).

Par exemple,
f(1

2
) = 1

2
, f(3

5
) = 1

5
, f(12

39
) = f( 4

13
) = 1

13
.

Le graphe de f ressemble à quelque chose comme ça :

Nous allons montrer que f est continue en tout point irrationnel, discontinue en tout point rationnel.

Clairement, f est discontinue en tout x0 rationnel non-nul. En effet, on peut toujours trouver une
suite d’irrationnels in → x0, pour laquelle

lim
n→∞

f(i0) = 0 ̸= f(x0) .

Avant de poursuivre, définissons pour chaque entier k ⩾ 1 l’ensemble

Q(k) :=
{
p
k
| irréductible, p ∈ Z

}
⊂ Q .

Remarquons que la distance entre deux points de Q(k) est d’au moins 1
k
. Par définition, si x ∈

Q(k), alors f(x) = 1
k
.

Fixons maintenant un irrationnel x0, et montrons que f est continue en x0, c’est-à-dire que

lim
x→x0

f(x) = f(x0) = 0 .

Pour cela, fixons ε > 0 et considérons un entier k ⩾ 1 tel que 1
k
⩽ ε. Soit δ > 0, assez petit pour

que les rationnels contenus dans [x0 − δ, x0 + δ] ne soient que des rationnels des ensembles Q(k′),
k′ > k.

⋆ Si x est irrationnel, alors f(x) = 0.

⋆ Si x est rationnel, alors il appartient nécessairement à un des ensemble Q(k′), k′ > k, ce qui
implique |f(x)| = 1

k′
< 1

k
< ε.

Dans les deux cas, on a |f(x)| ⩽ ε pour tout x ∈ [x0 − δ, x0 + δ]. ⋄

8.2 Prolongement par continuité

Informel 8.9. Supposons qu’une fonction ait un “trou” dans son domaine, au point x0. Si l’on veut
étendre le domaine de cette fonction, de façon à ce que son domaine contienne aussi x0, comment
doit-on définir f(x0)?
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8.2. Prolongement par continuité

Soit I un intervalle, x0 ∈ I , et soit I ′ := I \ {x0}. On obtient donc I en rajoutant à I ′ le point x0.

Soit maintenant une fonction f : I ′ → R, c’est-à-dire définie sur I à l’exception du point x0.

Si on veut étendre le domaine de f à tout I , il faut choisir une valeur pour f(x0). Ce choix est a
priori arbitraire, mais une façon naturelle de le faire est de donner à f , au point x0, une valeur qui
est semblable à celles qu’elle prend dans le voisinage de x0.

Plus précisément : si le nombre
L = lim

x→x0
f(x)

existe, il est naturel de l’utiliser pour définir la valeur de f au point x0 :

f(x0) := L .

Cette procédure est surtout utilisée dans le cas où f est, au départ, continue en tout point de I ′ :

Si la limite L existe, la nouvelle fonction

f̃ : I → R

x 7→

{
f(x) si x ̸= x0 ,

L si x = x0 .

est continue en tout point de I ; elle s’appelle la prolongée de f par continuité :

Informel 8.10. Du point de vue du graphe, on est parti d’une fonction qui était déjà continue en
tous les points de I ′, et l’existence de L a permis de simplement “boucher le trou”, pour rendre la
fonction continue sur tout I .

Exemple 8.11. Considérons la fonction f : R \ {3} → R, définie par

f(x) :=

{√
4− x si x < 3 ,

x− 2 si x > 3 .

On a montré précédemment que f est continue en tout point x ̸= 3. On a aussi calculé

lim
x→3

f(x) = 1 .
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8.2. Prolongement par continuité

On peut donc prolonger cette fonction par continuité à tout R, en définissant

f̃(x) :=


√
4− x si x < 3 ,

1 si x = 3 ,

x− 2 si x > 3 .

⋄
Exemple 8.12. Considérons f : R∗ → R, définie par

f(x) :=
sin(x)

x
.

Clairement, f est continue en tout point x0 ∈ R∗. On sait que

lim
x→0

f(x) = lim
x→0

sin(x)

x
= 1 ,

donc f peut être prolongée par continuité à tout R. Sa prolongée est donnée par

f̃(x) =

{
sin(x)
x

si x ̸= 0 ,

1 si x = 0 .

⋄

Informel 8.13. On ne peut pas toujours, comme dans les deux exemples précédents, “boucher le
trou” pour rendre une fonction continue partout :

Exemple 8.14. Soit f : R∗ → R définie par

f(x) :=

{
0 si x < 0 ,

1 si x > 0 .

Alors f est continue en tout point de R∗, Mais comme limx→0 f(x) n’existe pas (puisque limx→0− f(x) =
0 est différent de limx→0+ f(x) = 1), cette fonction ne peut pas être prolongée par continuité. ⋄
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8.3. Continuité sur un intervalle compact

8.3 Continuité sur un intervalle compact

Une fonction continue définie sur un intervalle compact, c’est-à-dire fermé et borné (donc du
type [a, b]), possède plusieurs propriétés remarquables. Commençons par définir ce que signifie
être continue sur un intervalle fermé et borné :

Définition 8.15. Une fonction f : [a, b] → R est continue si

⋆ elle est continue en tout x0 ∈]a, b[,
⋆ elle est continue à droite en x0 = a,

⋆ elle est continue à gauche en x0 = b.

Informel 8.16. Une fonction continue sur [a, b] est donc une fonction dont le graphe est une courbe
“traçable sans lever le crayon”, reliant le point A = (a, f(a)) au point B = (b, f(b)) :

Une première propriété importante est qu’une fonction continue sur un compact ne peut pas
prendre de valeurs arbitrairement grandes :

Théorème 8.17. Soit f : [a, b] → R continue. Alors f est bornée.

Preuve: Par l’absurde, supposons que f n’est pas majorée. Alors pour tout n > 0 il existe xn ∈ [a, b] tel que
f(xn) > n, et donc f(xn) → +∞.

Par construction, (xn)n est bornée. Par le Théorème de Bolzano-Weierstrass, il existe une sous-suite (xnk
)k

et x∗ ∈ [a, b] telle que limk→∞ xnk
= x∗. Mais donc, puisque f est continue, elle est en particulier continue

en x∗, et donc
f(x∗) = lim

k→∞
f(xnk

) = lim
n→∞

f(xn) = +∞ ,

ce qui est impossible (puisque f(x∗) doit être un nombre fini !). Donc f est majorée.

En adaptant l’argument, on montre que f est minorée.

Une deuxième propriété, très utile dans les problèmes d’optimisation : si une fonction est continue
sur un compact, elle atteint toujours son minimum et son maximum :

Théorème 8.18. Soit f : [a, b] → R continue. Alors f atteint son minimum et son maximum : il existe x∗
et x∗ ∈ [a, b] tels que

min
x∈[a,b]

f(x) = f(x∗) , max
x∈[a,b]

f(x) = f(x∗) .
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8.3. Continuité sur un intervalle compact

Preuve: Par le théorème précédent, f est bornée, et donc

s := sup
x∈[a,b]

f(x)

est bien défini. Nous allons montrer qu’il existe un point x∗ ∈ [a, b] où f prend cette valeur s.

Considérons la suite εn := 1
n . Par définition du supremum, pour tout n il existe xn ∈ [a, b] tel que

s− εn ⩽ f(xn) ⩽ s .

Par construction, f(xn) → s lorsque n → ∞. Mais, comme (xn)n est bornée (elle vit dans [a, b] !), le
Théorème de Bolzano-Weierstrass garantit qu’il existe une sous suite (xnk

)k, et un x∗ ∈ [a, b], tels que
limk→∞ xnk

= x∗.

Calculons f(x∗). Puisque f est continue sur [a, b], elle est en particulier continue en x∗. Comme xnk
→ x∗,

on a donc
f(x∗) = lim

k→∞
f(xnk

) .

Mais, puisque (f(xnk
))k est une sous-suite de (f(xn))n, elle converge vers la même limite :

f(x∗) = lim
k→∞

f(xnk
) = lim

n→∞
f(xn) = s .

On a donc
f(x∗) = sup

x∈[a,b]
f(x) = max

x∈[a,b]
f(x) .

On procède de même pour la construction d’un point x∗ où f atteint son minimum.

Informel 8.19. Le théorème dit que x∗ et x∗ existent toujours, mais il ne dit pas comment les
trouver ! (D’ailleurs en général, on ne sait pas les trouver.)

Exemple 8.20. Considérons f : [0, 2] → R, définie par

f(x) = x3 sin(x2 + cos(x)) .

Cette fonction est continue (c’est un produit de x3 avec une composée de fonctions continues),
donc par le théorème, il existe x∗ ∈ [0, 2] et x∗ ∈ [0, 2] tels que

f(x∗) = min
x∈[0,2]

f(x) , f(x∗) = max
x∈[0,2]

f(x) .

⋄

Pour souligner l’importance des hypothèses dans le théorème ci-dessus, voyons comme le résultat
n’est plus vrai en général lorsqu’une des hypothèses n’est pas vérifiée :
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8.3. Continuité sur un intervalle compact

Exemple 8.21. (Une fonction sur un intervalle compact, mais qui n’est pas continue en un point.)
Soit f : [0, 1] → R définie par

f(x) :=


x si 0 ⩽ x < 1

2
,

0 si x = 1
2
,

x− 1 si 1
2
< x ⩽ 1 .

Cette fonction est continue partout sauf en 1
2
, et elle ne possède ni de maximum ni de minimum :

⋄

Exemple 8.22. (Une fonction continue, sur un intervalle borné mais pas fermé.) Considérons

f(x) =
1

1− x2
, sur ]− 1, 1[ .

Alors f possède un minimum, atteint en x∗ = 0, mais pas de maximum : ⋄

Exemple 8.23. (Une fonction continue sur un intervalle fermé mais pas borné.) Soit

f(x) =
1

x
, sur [1,+∞[ .

Alors f possède un maximum, atteint sur le bord en x∗ = 1, mais pas de minimum :

⋄
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8.4 Le théorème de la valeur intermédiaire

(ici, Video: v_fonctions_continuite_TVI.mp4)

Une propriété essentielle des fonctions continues sur un intervalle compact :

Théorème 8.24. (Théorème de la valeur intermédiaire) Soit f : [a, b] → R continue. Si f(a) < f(b),
alors pour toute valeur intermédiaire h, f(a) < h < f(b), il existe c ∈]a, b[ tel que f(c) = h. (Affirmation
semblable dans le cas où f(a) > f(b).)

Le résultat se démontre en utilisant un Algorithme de bissection (qui est, en soi, tout aussi im-
portant que le théorème lui-même) :
Preuve: L’idée est de construire deux suites convergentes (an)n⩾0 et (bn)n⩾0. Celles-ci sont construites par
récurrence :

1) Posons a0 := a, b0 := b. Par définition, f(a0) < h < f(b0).
2) Pour n ⩾ 0, supposons que an et bn ont déjà été définis, et que f(an) ⩽ h ⩽ f(bn). Considérons alors

le point milieu de an et bn :

cn :=
an + bn

2
.

⋆ Si f(cn) ⩽ h, on pose an+1 := cn, bn+1 := bn.
⋆ Si f(cn) > h, on pose an+1 := an, bn+1 := cn. Par définition de an+1 et bn+1, f(an+1) ⩽ h ⩽
f(bn+1).

Maintenant que les suites (an)n⩾0 et (bn)n⩾0 ont été construites, regardons-les de plus près :
⋆ À chaque étape de l’algorithme ci-dessus, an+1 est soit an, soit cn. Comme cn > an, ceci implique

que dans tous les cas, an+1 ⩾ an. De plus, chaque an est inférieur à b. Par conséquent, (an)n⩾0 est
croissante et majorée, donc elle converge : notons sa limite

c− := lim
n→∞

an .

⋆ À chaque étape de l’algorithme ci-dessus, bn+1 est soit bn, soit cn. Comme cn < bn, ceci implique
que dans tous les cas, bn+1 ⩽ bn. De plus, chaque bn est supérieur à a. Par conséquent, (bn)n⩾0 est
décroissante et minorée, donc elle converge : notons sa limite

c+ := lim
n→∞

bn .

⋆ Comme à chaque étape exactement un des points devient le point milieu, on a

|an+1 − bn+1| =
1

2
|an − bn| = · · · = 1

2n+1
|a− b| → 0 .

Par l’inégalité triangulaire, on a donc que

|c− − c+| ⩽ |c− − an|+ |an − bn|+ |bn − c+| → 0 ,

ce qui implique que c− = c+, que l’on peut donc écrire simplement c.
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8.4. Le théorème de la valeur intermédiaire

On utilise maintenant de manière essentielle la continuité de f :

1) D’une part, comme an → c− et f(an) ⩽ h pour tout n, on a que

f(c) = f(c−) = lim
n→∞

f(an) ⩽ h .

2) D’autre part, comme bn → c+ et f(bn) ⩾ h pour tout n, on a que

f(c) = f(c+) = lim
n→∞

f(bn) ⩾ h .

Ceci implique bien que f(c) = h.

8.4.1 Application : existence de solutions pour des équations non-linéaires

Voyons une première conséquence du théorème de la valeur intermédiaire, que l’on a déjà ren-
contrée. (Dans le chapitre sur les nombres complexes, on a vu ce résultat comme une conséquence
du Théorème Fondamental de l’Algèbre.)

Corollaire 9. (Existence de racines pour polynômes réels de degré impair) Un polynôme à coefficients réels
de degré impair possède au moins une racine réelle.

Preuve: Considérons un polynôme de degré impair, à coefficients réels :

P (x) = a0 + a1x+ a2x
2 + . . . anx

n

où n est impair, et an ̸= 0. Rappelons que ce polynôme est une fonction continue de la variable x.

Sans perte de généralité, supposons que an > 0. Comme n est impair, on a

lim
x→+∞

P (x) = +∞ , lim
x→−∞

P (x) = −∞ .

Il existe donc un réel Na < 0 tel que P (Na) < 0, et un réel Nb > 0 tel que P (Nb) > 0.

En appliquant le Théorème de la valeur intermédiaire sur l’intervalle [Na, Nb], avec h = 0, on conclut : il
existe c ∈]Na, Nb[ tel que P (c) = 0.

Exemple 8.25. Le polynôme
P (z) = z7 − πz6 +

√
2z − 1

est de degré impair. Par le corollaire, il possède au moins une racine. ⋄

Le théorème de la valeur intermédiaire permet aussi de montrer l’existence de solutions pour des
équations non-linéaires, pas forcément polynomiales :
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8.4. Le théorème de la valeur intermédiaire

Exemple 8.26. Montrons que l’équation non-linéaire

cos(x) = x

possède au moins une solution : Pour ce faire, définissons

f(x) := cos(x)− x ,

que l’on considère sur l’intervalle fermé et borné [0, π
2
]. On a d’une part que

f(0) = 1− 0 = 1 > 0 ,

et d’autre part que
f(π

2
) = 0− π

2
< 0 .

Donc, par le Théorème de la valeur intermédiaire, il existe c ∈]0, π
2
[ tel que f(c) = 0, ce qui est

équivalent à cos(c) = c.

⋄

8.4.2 Application : sur l’ensemble image d’une fonction continue

Théorème 8.27. Soit f : [a, b] → R continue. Alors son ensemble image Im(f) est un intervalle fermé et
borné, donné par

Im(f) =
[
min
x∈[a,b]

f(x) , max
x∈[a,b]

f(x)
]

Preuve: On sait que f atteint son minimum et son maximum :

f(x∗) = max
x∈[a,b]

f(x) , f(x∗) = min
x∈[a,b]

f(x) .

Puisque f(x∗) ⩽ f(x) ⩽ f(x∗) pour tout x ∈ [a, b], on a

Im(f) ⊂ [f(x∗), f(x
∗)] .

Si x∗ = x∗, alors f est constante et donc Im(f) ne contient qu’un point (qu’on peut considérer comme un
intervalle fermé et borné). Sinon, on peut supposer sans perte de généralité que x∗ < x∗.

En choisissant un h ∈ [f(x∗), f(x
∗)] quelconque, le théorème de la valeur intermédiaire garantit qu’il existe

un c ∈]x∗, x∗[ tel que f(c) = h. Par conséquent, h ∈ Im(f), et donc

[f(x∗), f(x
∗)] ⊂ Im(f) .

On a donc montré que Im(f) = [f(x∗), f(x
∗)], qui est bien un intervalle fermé et borné.
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8.5 Continuité et calcul de limites

On a déjà vu que si une fonction f est continue en un point x∗, alors pour toute suite (xn) tendant
vers x∗,

lim
n→∞

f(xn) = f
(
lim
n→∞

xn
)
= f(x∗).

Voyons maintenant un résultat analogue, mais dans lequel la suite xn (dont la variable est l’entier
n) est remplacée par une fonction g(x) (dont la variable est un réel x) :

Théorème 8.28. Soit f(y) définie dans le voisinage d’un point y0 = L, et continue en ce point y0.

1) Si g est définie dans un voisinage de x0, et si lim
x→x0

g(x) = y0, alors

lim
x→x0

f(g(x)) = f(y0) .

2) Si g est définie sur un domaine contenant un intervalle de la forme ]a,+∞[, et si lim
x→∞

g(x) = y0,
alors

lim
x→∞

f(g(x)) = f(y0) .

Preuve: On démontre la première affirmation.

Fixons ε > 0. On procède en deux étapes :

⋆ Puisque f est continue en y0, il existe η > 0 tel que |f(y)− f(y0)| ⩽ ε dès que 0 < |y − y0| ⩽ η.

⋆ Ensuite, puisque limx→x0 g(x) = y0, il existe δ > 0 tel que |g(x)− y0| ⩽ η dès que 0 < |x− x0| ⩽ δ.

Prenons donc un x tel que 0 < |x− x0| ⩽ δ. En utilisant la première étape avec y = g(x), on a

|f(g(x))− f(y0)| = |f(y)− f(y0)| ⩽ ε .

Ceci montre bien que limx→x0 f(g(x)) = f(y0).

La deuxième affirmation se démontre de la même façon.

Informel 8.29. En d’autres termes, lorsqu’on étudie une limite d’une composée f(g(x)), dans
laquelle on sait que g(x) → y0, et que f est continue au point y0, alors on peut “rentrer la limite
dans f” :

lim f(g(x)) = f
(
lim g(x)

)
= f(y0) .

Exemple 8.30. Considérons la limite

lim
x→∞

√
x

x+ 1
.
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8.5. Continuité et calcul de limites

On voit ici que g(x) = x
x+1

→ 1 lorsque x → ∞. Montrons que f(x) =
√
x est continue en y0 = 1.

En effet, puisque

|f(x)− f(1)| = |
√
x−

√
1| = |x− 1|√

x+ 1
⩽ |x− 1| ,

on a bien que limx→1 f(x) = f(1).

On peut donc “rentrer la limite dans f”

lim
x→∞

√
x

x+ 1
=

√
lim
x→∞

x

x+ 1
=

√
1 = 1 .

⋄
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