
Chapitre 10

Développements limités

10.1 Introduction

(ici, Video: v_DL_intro.mp4)

Rappelons que la dérivabilité d’une fonction f en un point x0 permet de la représenter au voisi-
nage de ce point :

f(x) = f(x0) + (f ′(x0) + rx0(x))(x− x0)

= f(x0)︸ ︷︷ ︸
ordre zéro

+f ′(x0)(x− x0)

︸ ︷︷ ︸
1er ordre

+ rx0(x)(x− x0)︸ ︷︷ ︸
=R(x), reste

,

où limx→x0 rx0(x) = 0.

Cette dernière expression doit être lue de la façon suivante : pour un x proche de x0, f(x) se
calcule en prenant

1) sa valeur en x0, f(x0), à laquelle il faut rajouter...

2) une correction linéaire en x− x0, f ′(x0)(x− x0), à laquelle on rajoute encore...

3) un reste R(x) = (x− x0)rx0(x).

La somme des trois termes donne exactement f(x), et ils sont en ordre décroissant d’importance
(voir la figure ci-dessus) : la correction linéaire est petite puisque x − x0 est petit, et le reste est
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petit puisque limx→x0 R(x) = 0. Mais en fait le reste est beaucoup plus petit que la correction
linéaire, puisque

lim
x→x0

R(x)

x− x0
= lim

x→x0
rx0(x) = 0 .

Informel 10.1. En d’autres termes, R(x) est “doublement” petit, puisque c’est le produit de x−x0
(qui est petit lorsque x est proche de x0) par rx0(x) (qui est aussi petit lorsque x est proche de x0).

Exemple 10.2. Considérons f(x) = ex, au voisinage du point x0 = 0. Si on s’intéresse par exemple
au point x = 0.3, on obtient

f(0.3) = f(0)︸︷︷︸
1

+ f ′(0)0.3︸ ︷︷ ︸
0.3

+0.3r0(0.3)︸ ︷︷ ︸
0.0498...

= 1.3498 . . .

⋄

Une question naturelle est de savoir si il est possible d’obtenir une approximation de la fonction
qui aille au-delà de l’approximation linéaire (et de son reste) : pour un point fixé x ̸= x0, peut-on
approximer f(x) à l’aide d’une expression qui soit plus précise que l’approximation linéaire?

La première amélioration naturelle serait une approximation quadratique (du deuxième ordre), qui
du point de vue graphique consiste à approximer le graphe, localement, par une parabole plutôt
que par une droite. Une telle approximation, si elle existe, est plus précise puisqu’elle doit tenir
compte de la courbure du graphe dans le voisinage du point.

Après l’approximation quadratique, on pourra essayer de produire une approximation cubique,
et ainsi de suite, on pourra considérer des approximations d’ordres de plus en plus grand, à
l’aide de polynômes. C’est le but de ce chapitre que de présenter cette construction, et de donner
des conditions sur f qui garantissent que ces approximations sont possibles.

Informel 10.3. Certaines formules/expressions, dans ce chapitre, sont assez longues. On pourra
donc augmenter la largeur du texte visible avec les boutons “+” et “−” dans la barre ci-dessus.

10.2 Définition et unicité

Un développement limité permet de représenter une fonction au voisinage d’un point x0, à l’aide
d’un polynôme :

f(x) = polynôme(x) +R(x) .

Le polynôme approximera bien la fonction dans le sens où la valeur du reste R(x) doit être négli-
geable proche de x0, dans un sens très précis :
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Définition 10.4. Soit f définie au voisinage de x0. On appelle développement limité d’ordre n de
f autour de x0 une représentation de f(x) de la forme

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n +R(x) ,

où

⋆ les a0, a1, a2, . . . , an ∈ R sont des coefficients (constants), et le polynôme

p(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n

est appelé partie principale du développement, et

⋆ le reste R(x) est de la forme
R(x) = (x− x0)

nε(x) ,

où ε(x) est une fonction définie dans un voisinage épointé de x0, telle que

lim
x→x0

ε(x) = 0 .

Remarque 10.5. ⋆ Remarquons que dans le cas n = 1, la partie principale n’est autre que la
droite tangente en x0, et dans le reste R(x) = (x− x0)ε(x), la fonction ε(x) représente rx0(x) :

f(x) = f(x0)︸ ︷︷ ︸
=a0

+ f ′(x0)︸ ︷︷ ︸
=a1

(x− x0) + (x− x0)rx0(x)︸ ︷︷ ︸
=R(x)

⋆ On évitera de trop alourdir l’écriture, en omettant d’indiquer la dépendance de R(x) et ε(x)
en f , n, et x0 (une notation plus précise serait Rf,x0,n(x), εf,x0,n(x)).

⋆ Il est important, la plupart du temps, de souligner que plus x est proche de x0, plus le reste
devient négligeable par rapport à la partie principale ! Plus précisément, le reste est toujours
plus petit que le terme de la partie principale de plus grand degré. En effet, pour tout
k = 0, 1, 2, . . . , n,

lim
x→x0

R(x)

(x− x0)k
= lim

x→x0
(x− x0)

n−kε(x) = 0 .

C’est pour cette raison que la partie principale fournit une bonne approximation de la fonc-
tion au voisinage de x0.

⋆ Dans la suite, pour abbréger “développement limité d’ordre n”, on écrira simplement “DL(n)”.
⋄

La façon très précise dont le DL(n) a été défini a une première conséquence importante : lorsqu’il
existe, il est unique.

Lemme 27. Si f possède un DL(n) autour de x0, alors les coefficients a0, a1, . . . , an et la fonction ε(x) et
sont uniques.

Preuve: Supposons que f possède un DL(n) en x0, et qu’il y ait deux façons de l’écrire, la première étant

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n + (x− x0)
nε1(x) ,

la deuxième étant

f(x) = b0 + b1(x− x0) + b2(x− x0)
2 + · · ·+ bn(x− x0)

n + (x− x0)
nε2(x) ,

En prenant x→ x0, on a donc d’une part

lim
x→x0

f(x) = a0 ,
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et d’autre part
lim
x→x0

f(x) = b0 ,

ce qui implique a0 = b0. Ensuite, remarquons que

lim
x→x0

f(x)− a0
x− x0

= lim
x→x0

(
a1 + a2(x− x0) + · · ·+ an(x− x0)

n−1 + (x− x0)
n−1ε1(x)︸ ︷︷ ︸

→0

)
=a1 ,

qui puisque a0 = b0 est aussi égale à

lim
x→x0

f(x)− b0
x− x0

= lim
x→x0

(
b1 + b2(x− x0) + · · ·+ bn(x− x0)

n−1 + (x− x0)
n−1ε2(x)︸ ︷︷ ︸

→0

)
=b1 ,

donc a1 = b1. En procédant ainsi, on montre ensuite que a2 = b2, a3 = b3, ..., an = bn. Finalement,

ε1(x) =
f(x)−

{
a0 + a1(x− x0) + · · ·+ an(x− x0)

n
}

(x− x0)n

=
f(x)−

{
b0 + b1(x− x0) + · · ·+ bn(x− x0)

n
}

(x− x0)n

= ε2(x) .

(Donc le reste, est une fonction en général compliquée, mais que l’on peut toujours exprimer explicitement
à l’aide de f(x) et de la partie principale.)

Informel 10.6. On utilisera ce dernier résultat souvent dans ce qui suit : dès que l’on peut écrire
une fonction f , au voisinage d’un point x0, comme

f(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)
n + ε(x)(x− x0)

n ,

où limx→x0 ε(x) = 0, c’est qu’on a trouvé le ( = l’unique) DL(n) de f autour de x0.

Exemple 10.7. Reprenons f(x) = ex au voisinage de x0 = 0. On sait que

ex = 1 + x+ xε(x) ,

avec ε(x) → 0 lorsque x→ 0. Ceci représente un DL(1) en x0 = 0.

Montrons maintenant que cette fonction possède un DL(2) en 0, donné par

ex = 1 + x+ 1
2
x2 + x2ε(x) .

(Attention : la fonction ε(x), ici, n’est pas la même que celle de la ligne précédente !) Pour ce faire
exprimons, explicitement en fonction de x,

ε(x) =
ex − {1 + x+ x2

2
}

x2
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(cette fonction est effectivement définie dans un voisinage épointé de x0 = 0), et calculons

lim
x→0

ε(x) = lim
x→0

ex −
{
1 + x+ 1

2
x2
}

x2

BH
= lim

x→0

ex −
{
1 + x

}
2x

BH
= lim

x→0

ex −
{
1
}

2
= 0 .

Par le théorème d’unicité, ceci implique que l’expression ci-dessus est bien le DL(2). ⋄

(ici, Video: v_DL_voir_DL_exp.mp4)

Exemple 10.8. Considérons f(x) = 1
1−x , dans un voisinage de x = 0. Rappelons la formule obtenue

pour une somme géométrique : pour tout x ̸= 1,

1 + x+ x2 + x3 + · · ·+ xn =
1− xn+1

1− x
=

1

1− x
− xn+1

1− x
,

qui permet d’écrire
1

1− x
= 1 + x+ x2 + · · ·+ xn︸ ︷︷ ︸

principale

+xn
x

1− x︸ ︷︷ ︸
=:ε(x)

Puisque limx→0 ε(x) = 0, cette expression est bien le DL(n) de f autour de zéro.

⋄
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10.3 Propriétés de base

Une conséquence de l’unicité est qu’un développement limité d’ordre n donne automatiquement
des développements limités d’ordres inférieurs :

Corollaire 11. Si f possède un DL(n) autour de x0, donné par

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n +R(x) ,

alors pour tout 0 ⩽ k < n, f possède un DL(k) autour de x0, donné par

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ ak(x− x0)

k + R̃(x) .

(Les coefficients a0, a1, . . . , ak sont les mêmes, mais le reste est différent.)

Preuve: En effet, pour tout k < n, on peut réarranger le DL(n) comme suit :

f(x) = a0 + a1(x− x0) + · · ·+ ak(x− x0)
k + · · ·+ an(x− x0)

n + (x− x0)
nε(x)

= a0 + a1(x− x0) + · · ·+ ak(x− x0)
k + (x− x0)

k
(
ak+1(x− x0) + · · ·+ (x− x0)

n−kε(x)
)︸ ︷︷ ︸

=:ε̃(x)

Comme ε̃(x) → 0 lorsque x → x0, l’unicité du DL(k) implique bien que cette dernière ligne est le DL(k)
de f autour de x0.

On peut ensuite obtenir des développements limités de sommes ou de produits de fonctions :

Lemme 28. Soient f, g définies au voisinage de x0, possédant chacune un DL(n) :

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n + ε(x)(x− x0)
n ,

g(x) = b0 + b1(x− x0) + b2(x− x0)
2 + · · ·+ bn(x− x0)

n + η(x)(x− x0)
n .

Alors

1) f + g possède aussi un DL(n) autour de x0, donné par

(f + g)(x) = c0 + c1(x− x0)+c2(x− x0)
2 + · · ·+ cn(x− x0)

n + ϕ(x)(x− x0)
n ,

où ck := ak + bk, et ϕ(x) := ε(x) + η(x).

2) f · g possède aussi un DL(n) autour de x0, donné par

(f · g)(x) = d0 + d1(x− x0)+d2(x− x0)
2 + · · ·+ dn(x− x0)

n + ψ(x)(x− x0)
n ,

où dk :=
k∑
j=0

ajbk−j , et limx→x0 ψ(x) = 0.

Preuve: 1. En additionnant les deux DL(n) et en regroupant les termes correspondants aux mêmes puis-
sances, on a

f(x) + g(x) =(a0 + b0)

+ (a1 + b1)(x− x0)

+ · · ·
+ (an + bn)(x− x0)

n

+ (ε(x) + η(x))︸ ︷︷ ︸
=:ϕ(x)

(x− x0)
n .
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Comme limx→x0 ϕ(x) = 0, l’unicité du DL fait que l’expresion ci-dessus est bien le DL(n) pour f + g.

2. Considérons pous simplifier le cas n = 2. Et pour y voir clair, écrivons les parties principales de manière
plus compacte :

f(x) = p(x) + ε(x)(x− x0)
2 ,

g(x) = q(x) + η(x)(x− x0)
2 ,

où

p(x) = a0 + a1(x− x0) + a2(x− x0)
2

q(x) = b0 + b1(x− x0) + b2(x− x0)
2 .

En multipliant les deux DL(2), et en regroupant, on obtient

f(x)g(x)

= p(x)q(x) + p(x)η(x)(x− x0)
2 + q(x)ε(x)(x− x0)

2 + ε(x)η(x)(x− x0)
4

= p(x)q(x) + (x− x0)
2
(
p(x)η(x) + q(x)ε(x) + ε(x)η(x)(x− x0)

2
)︸ ︷︷ ︸

=:ψ1(x)

,

où ψ1(x) → 0 quand x→ x0. Ensuite, calculons explicitement le produit des parties principales, et regrou-
pons les puissances :

p(x)q(x) = a0b0

+ (a0b1 + a1b0)(x− x0)

+ (a0b2 + a1b1 + a2b0)(x− x0)
2

+ (a1b2 + a2b1)(x− x0)
3 + a2b2(x− x0)

4︸ ︷︷ ︸
=:ψ2(x)(x−x0)2

,

où ψ2(x) → 0 quand x→ x0. On a donc, en posant ψ(x) := ψ1(x) + ψ2(x),

f(x)g(x) = a0b0

+ (a0b1 + a1b0)(x− x0)

+ (a0b2 + a1b1 + a2b0)(x− x0)
2

+ ψ(x)(x− x0)
2 .

ce qui démontre la formule dans le cas où n = 2. Le cas général se traite de façon similaire.

Exemple 10.9. Considérons

f(x) =
ex

1− x
au voisinage de x0 = 0 .

On a déjà calculé plus haut les DL(2) de ex et 1
1−x ,

ex = 1 + x+
1

2
x2 + x2ε(x) ,

1

1− x
= 1 + x+ x2 + x2η(x) ,

Donc, par le lemme précédent,

ex · 1

1− x
= (1 · 1) + (1 · 1 + 1 · 1)x+ (1 · 1 + 1 · 1 + 1

2
· 1)x2 + x2ψ(x)

= 1 + 2x+ 5
2
x2 + x2ψ(x) .

⋄
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10.4 La formule de Taylor

Maintenant, pour une fonction f donnée, on aimerait

⋆ Donner une condition suffisante sur f pour garantir qu’elle possède un DL(n) en un point
x0.

⋆ Savoir comment calculer les coefficients a0, a1, . . . , an et le reste.

Sans surprise, l’existence d’un DL sera garantie si la fonction est suffisamment lisse dans le voisi-
nage de x0.

10.4.1 La formule

Rappelons que pour un intervalle ouvert I , Ck(I) désigne l’ensemble de fonctions k-fois déri-
vables, dont les dérivées f (1) = f ′, f (2), . . . , f (k) sont toutes continues.

Théorème 10.10. Soit I un intervalle ouvert, et f ∈ Ck+1(I). Alors quel que soit x0 ∈ I , f possède un
DL(k) autour de x0, donné par

f(x) = f(x0)+f
′(x0)(x−x0)+

f (2)(x0)

2!
(x−x0)2+

f (3)(x0)

3!
(x−x0)3+ · · ·+ f (k)(x0)

k!
(x−x0)k+R(x) ,

où le reste R(x) = (x− x0)
kε(x), et où la fonction ε(x) est donnée par

ε(x) = (x− x0)
f (k+1)(u)

(k + 1)!
,

et u est un réel entre x0 et x, qui dépend de x0, x, k, f .

L’expression ci-dessus, qui exprime le DL(k) dans lequel les coefficients impliquant les dérivées
d’ordre supérieur de la fonction, est la Formule de Taylor ; lorsque x0 = 0, c’est la Formule de
MacLaurin.
Preuve: Fixons un point x0 ∈ I , puis étudions f(x) en un autre point x ∈ I , x ̸= x0. Sans perte de généralité,
supposons que x0 < x. Considérons le nombre Ax, défini implicitement par

f(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)

2 + · · ·+ f (k)(x0)

k!
(x− x0)

k + (x− x0)
k+1 Ax

(k + 1)!
.

(Cela signifie que si on le désire, on peut savoir ce que vaut Ax en l’isolant dans cette dernière expression.)

Avec x0 et x fixés, on introduit la fonction φ : [x0, x] → R, définie par

φ(t) := f(x)−
{
f(t) + f ′(t)(x− t) +

f (2)(t)

2!
(x− t)2 + · · ·+ f (k)(t)

k!
(x− t)k + (x− t)k+1 Ax

(k + 1)!

}
.

Remarquons que φ satisfait aux hypothèses du Théorème de Rolle :

⋆ φ(t) est continue sur [x0, x], et dérivable sur ]x0, x[. En effet, les puissances de t qu’elle contient sont
évidemment dérivables, et comme on suppose que f est k + 1 fois dérivable, toutes les dérivées
f (1)(t), . . . , f (k)(t) apparaissant dans φ(t) sont continues.

⋆ φ(x0) = φ(x) = 0.
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Il existe donc un point u ∈]x0, x[ tel que φ′(u) = 0.

Maintenant, dérivons φ par rapport à t. (On rappelle que dans cette dérivation, “x” est considéré comme
une constante !)

φ′(t) = 0−
{
(f(t))′ + (f ′(t)(x− t))′ +

(f (2)(t)
2!

(x− t)2
)′

+ · · ·+
(f (k)(t)

k!
(x− t)k

)′
+
(
(x− t)k+1 Ax

(k + 1)!

)′}
= −

{
f ′(t) + (f ′′(t)(x− t)−f ′(t)) +

(f (3)(t)
2!

(x− t)2−f
(2)(t)

1!
(x− t)1

)
+
(f (4)(t)

3!
(x− t)3−f

(3)(t)

2!
(x− t)2

)
+ · · ·

+
(f (k+1)(t)

k!
(x− t)k︸ ︷︷ ︸− f (k)(t)

(k − 1)!
(x− t)k−1

)
− (x− t)k

Ax
k!︸ ︷︷ ︸
}
.

En profitant du téléscopage,

φ′(t) =
(x− t)k

k!

(
Ax − f (k+1)(t)

)
,

En utilisant cette expression au point t = u défini ci-dessus,

0 = φ′(u) =
(x− u)k

k!

(
Ax − f (k+1)(u)

)
.

Puisque x0 < u < x, on a (x− u)k ̸= 0, ce qui implique

Ax = f (k+1)(u) ,

et prouve la formule de Taylor.

Pour montrer qu’on a vraiment obtenu un DL(k), il reste à étudier le reste, qui est donné par

ε(x) = (x− x0)
f (k+1)(u)

(k + 1)!
.

Considérons un petit intervalle fermé autour de x0 : J = [x0 − δ, x0 + δ] ⊂ I . Puisque f ∈ C(k+1)(I), la
continuité de f (k+1) sur I implique qu’elle est bornée sur J : il existe une constante C telle que

|fk+1(x)| ⩽ C ∀x ∈ J .

En particulier, |f (k+1)(u)| ⩽ C, ce qui implique que sur J , |ε(x)| ⩽ C
(k+1)! |x− x0|. En particulier,

lim
x→x0

ε(x) = 0 .

(ici, Video: a_breaking_bad_DL.mp4)

Informel 10.11. Le résultat ci-dessus est intéressant, mais ses hypothèses peuvent en fait être af-
faiblies : il existe un résultat similaire, mais qui garantit l’existence d’un DL(k) pour une fonction
k fois (et non pas k + 1 fois) continûment dérivable. L’avantage de la formulation ci-dessus est
que le reste est exprimé de façon très explicite, ce qui permettra d’utiliser le résultat efficacement
au chapitre suivant.

Donc la formule de Taylor nous dit que l’on peut obtenir un développement limité en x0 d’ordre
arbitrairement grand, à condition que la fonction soit suffisamment dérivable en x0 et dans son
voisinage, et que l’on sache calculer ses dérivées f (k)(x0).
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10.4. La formule de Taylor

Exemple 10.12. Considérons

f(x) = ex au voisinage de x0 = 0 .

Comme ex est de classe Ck+1 pour tout k, elle possède des développements limités de tous les
ordres. On a f (j)(x) = ex et donc f (j)(0) = 1 pour tout j. Par la formule de MacLaurin,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xk

k!
+R(x) ,

où R(x) = xkε(x), et

ε(x) = x
eu

(k + 1)!
pour un certain u ∈]0, x[ .

⋄
Exemple 10.13. f(x) = 1

1−x autour de x0 = 0. Puisque f n’est pas définie en x = 1, on la considère
par exemple dans l’ouvert ]− 1, 1[. Écrivons f(x) = (1− x)−1, et calculons ses dérivées :

f (1)(x) = (−1)(1− x)−2(−1)

f (2)(x) = (−1)(−2)(1− x)−3(−1)2

f (3)(x) = (−1)(−2)(−3)(1− x)−4(−1)3

· · ·
f (k)(x) = (−1)(−2)(−3) · · · (−k)(1− x)−(k+1)(−1)k .

On a donc f (j)(x) = j!
(1−x)j+1 pour tout j, ce qui donne

f (j)(0) = j!

Par la formule de MacLaurin,

1

1− x
= 1 + x+ x2 + x3 + · · ·+ xk +R(x) ,

qui est bien ce que nous avions trouvé plus haut. ⋄
Exemple 10.14. Considérons f(x) = sin(x) en x0 = 0. Rappelons que

f (k)(x) = sin(x+ k π
2
) ,

donc f (k)(0) = 0 pour tous les k pairs, ce qui a pour conséquence que le développement de
MacLaurin ne contient aucune puissance paire. On a par exemple le DL(3),

sin(x) = x− x3

3!
+R(x)
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ou le DL(5) :

sin(x) = x− x3

3!
+
x5

5!
+R(x) .

⋄
Remarque 10.15. Si on dispose d’une calculatrice qui ne connaît pas les fonctions trigonomé-
triques, on peut utiliser des développements limités. Pour illustrer le procédé, supposons que
l’on veuille calculer le sinus d’un angle de 1 radian, sin(1), sans calculatrice. En allant jusqu’à
l’ordre 9, l’approximation par la partie principale

sin(x) ≃ x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!

fournit déjà une approximation remarquable, pour tout x ∈ [−π, π]. Si on l’utilise pour x = 1 :

sin(1) ≃ 0.8414710097 (ordre 9)

Si on compare avec la valeur “exacte” obtenue avec une calculatrice :

sin(1) = 0.841470984808 · · · (exact) .

⋄
Exemple 10.16. f(x) = cos(x) en x0 = 0 :

cos(x) = 1− x2

2!
+
x4

4!
+R(x)

⋄
Exemple 10.17. f(x) = log(1 + x) en x0 = 0. Les dérivées se calculent facilement :

f (1)(x) = (1 + x)−1

f (2)(x) = (−1)(1 + x)−2

f (3)(x) = (−1)(−2)(1 + x)−3

· · ·
f (k)(x) = (−1)k+1(k − 1)!(1 + x)−k ,

ce qui donne
f (k)(0)

k!
=

(−1)k+1(k − 1)!

k!
=

(−1)k+1

k
.

On a ainsi le DL(k) :

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)k+1x

k

k
+R(x) .

⋄
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10.4.2 À propos de l’existence d’un DL

10.5 Utilisation de DL pour le calcul de limites

Les développements limités fournissent un moyen très précis d’approximer une fonction au voi-
sinage d’un point, à l’aide d’un polynôme. Et les polynômes étant des objets très simples à mani-
puler, l’utilisation de développements limités peut grandement simplifier l’étude d’une fonction
en ce point.

Par exemple, ils peuvent être utiles pour le calcul de certaines limites.

Dans toutes les indéterminations “0
0
”

lim
x→x0

f(x)

g(x)
,

rencontrées précédemment, on étudie un quotient de deux fonctions dont les valeurs deviennent
toujours plus petites à mesure que x se rapproche de x0. Lever l’indétermination c’est, en somme,
arriver à expliciter la “petitesse” de chacune des deux fonctions, de façon suffisamment précise
pour arriver à pouvoir calculer la valeur du quotient lorsque x est proche de x0.
Exemple 10.18. Considérons l’indétermination “0

0
” dans la limite

lim
x→0

cos(x)− 1

x2

On a déjà calculé cette limite (en multipliant et divisant par le conjugué cos(x) + 1), mais voyons
comment utiliser un DL pour approcher le problème de façon différente.

Comme on s’intéresse à x proche de 0, on peut utiliser le DL(2) du cosinus vu plus haut,

cos(x) = 1− x2

2!
+ x2ε(x) ,

où on rappelle que ε(x) → 0 quand x → 0. Ce DL permet de montrer que la “petitesse” du
numérateur de notre quotient est en fait quadratique en x, puisque

cos(x)− 1 = −x
2

2!
+ x2ε(x) =

(
−1

2
+ ε(x)

)
x2 .

(Une “petitesse en x2” donc.) Ceci donne

cos(x)− 1

x2
=

(−1
2
+ ε(x))x2

x2
= −1

2
+ ε(x) .

Cette expression montre, de manière transparente, que ce quotient est proche de −1
2

quand x est
proche de 0. En effet, puisque limx→0 ε(x) = 0, la limite est

lim
x→0

cos(x)− 1

x2
= −1

2
+ lim

x→0
ε(x) = −1

2
.

⋄

Informel 10.19. Attention : lorsqu’on utilise un DL(n), on utilise le fait que la fonction “ε(x)”
est petite proche du point considéré. Pourtant, on ne sait en général pas estimer précisément la
petitesse de ε(x) !

Parfois, pour arriver à décrire précisément la petitesse d’un terme, il est nécessaire de choisir un
DL d’un ordre suffisamment grand, comme dans l’exemple suivant :
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Exemple 10.20. (Sur l’importance du choix de l’ordre du DL.) Étudions

lim
x→0

(sinx)2 − x2 cos(x)

x2(1− cosx)
.

Numérateur et dénominateur sont petits quand x est proche de 0, et des DL vont permettre de
quantifier précisément leurs petitesses respectives. Par contre, on va voir qu’il sera nécessaire de
prendre un développement d’ordre suffisamment élevé pour conclure.

1) Commençons simplement, en prenant le DL(1) pour le sinus et le DL(2) pour le cosinus.
On nomme les restes différemment pour pouvoir les distinguer :

sin(x) = x+ xεs(x) cos(x) = 1− x2

2!
+ x2εc(x) .

Alors le numérateur devient

(sinx)2 − x2 cos(x) =
(
x+ xεs(x)

)2 − x2
(
1− x2

2!
+ x2εc(x)

)
= 2x2εs(x) + x2εs(x)

2 +
x4

2!
+ x4εc(x)︸ ︷︷ ︸

??

Dans cette expression, tout est petit, mais aucun terme ne domine clairement les autres. Il
est donc nécessaire d’aller à un ordre plus élevé.

2) Prenons le DL(3) pour le sinus, en gardant le DL(2) pour le cosinus :

sin(x) = x− x3

3!
+ x3εs(x) cos(x) = 1− x2

2!
+ x2εc(x) .

Alors le numérateur peut s’écrire

(sinx)2 − x2 cosx

=
(
x− x3

3!
+ x3εs(x)

)2 − x2
(
1− x2

2!
+ x2εc(x)

)
=

1

6
x4 + x4

(
x2

(3!)2
+ x2εs(x)

2 + 2εs(x)− x2

3!
εs(x)− εc(x)

)︸ ︷︷ ︸
≡ε(x)

=
(1
6
+ ε(x)

)
x4 .

Maintenant, on comprend que la petitesse du numérateur est en x4.

Ensuite, le dénominateur devient

x2(1− cosx) = x2
{
1−

(
1− x2

2!
+ x2εc(x)

)}
=

1

2
x4 − x4εc(x)

=
(1
2
− εc(x)

)
x4 .

et représente donc aussi une petitesse en x4. Donc

lim
x→0

(sinx)2 − x2 cos(x)

x2(1− cosx)
= lim

x→0

(1
6
+ ε(x))x4

(1
2
− εc(x))x4

= lim
x→0

1
6
+ ε(x)

1
2
− εc(x)

=
1

3
.

Remarquons que dans ce calcul, on a vraiment travaillé partout avec des égalités ! ⋄
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10.6 Composition de DL

Supposons qu’on veuille un DL(n) d’une fonction f autour d’un point x0, et que cette fonction
soit en fait une composée :

f(x) = (g ◦ h)(x) = g(h(x)) .

On supposera, pour simplifier l’exposition, que les fonctions g et h possèdent des dérivées de tous
les ordres.

Informel 10.21. A priori, on pourrait utiliser la formule de Taylor, qui permet d’obtenir un déve-
loppement limité pour f en passant par les dérivées f (1)(x0), . . . , f

(k)(x0). Mais puisque f est une
composée, le calcul de f (k)(x0), pour k grand, risque bien d’être compliqué...

10.6.1 Cas simples

Voyons un exemple simple de composée dans lequel on peut éviter de passer par le calcul des
grandes dérivées de f .
Exemple 10.22. Fixons un entier n, grand, et cherchons un DL(n) de

f(x) =
1

1 + x2
,

autour de x = 0. Cette fonction peut s’écrire

f(x) =
1

1− z

∣∣∣
z=−x2

= g(h(x)) ,

où
g(x) =

1

1− x
, h(x) = −x2 .

Pour g, on a déjà calculé le DL(n) autour de z0 = 0,

g(z) = 1 + z + z2 + z3 + · · ·+ zn +R(z) ,

où R(z) = znε(z). Comme z = h(x) = −x2 est proche de 0 lorsque x est proche de x0 = 0, on peut
l’injecter directement dans le DL de g, ce qui donne le DL de f = g ◦ h :

g(h(x)) = 1 + h(x) + h(x)2 + h(x)3 + · · ·+ h(x)n +R(h(x))

= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n +R(−x2)

Si on regarde le reste de plus près,

R(−x2) = (−x2)nε(−x2) = x2nε̃(x) ,

où on a posé ε̃(x) := (−1)nε(−x2), qui tend bien vers zéro lorsque x→ 0.

On a donc
f(x) = 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + x2nε̃(x) .

⋄

On peut utiliser une idée semblable pour des développements qui ne sont pas forcément autour
de x = 0 :
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Exemple 10.23. Soit

f(x) =
1

x
.

Cherchons un DL(n) de f autour de x0 = 3. Ici aussi, on pourrait facilement calculer les dérivées
de f d’ordre quelconque (voir plus bas), mais on peut aussi récrire f en utilisant le fait qu’on
l’étudie autour de x0 = 3 :

1

x
=

1

3 + (x− 3)

=
1

3

1

1 + x−3
3

=
1

3

1

1− z

∣∣∣
z=−x−3

3

=
1

3
g(h(x)) ,

où g(z) = 1
1−z et h(x) = −x−3

3
. Quand x est proche de x0 = 3, z = h(x) est proche de zéro ; on peut

donc directement injecter h(x) dans le DL(n) de g :

f(x) =
1

3

{
1 + h(x) + h(x)2 + h(x)3 + · · ·+ h(x)n +R(h(x))

}
=

1

3

{
1− 1

3
(x− 3) +

1

32
(x− 3)2 − 1

33
(x− 3)3 + · · ·+ (−1)n

3n
(x− 3)n +R(−x− 3

3
)
}

=
1

3
− 1

32
(x− 3) +

1

33
(x− 3)2 − 1

34
(x− 3)3 + · · ·+ (−1)n

3n+1
(x− 3)n + R̃(x)

Remarquons que l’on tombe bien ce qu’on aurait trouvé en passant par la formule de Taylor. En
effet, si f(x) = 1

x
, alors

f (n)(x) = (−1)nn!x−(n+1) ,

et donc

f (n)(3)

n!
=

(−1)n

3n+1
.

⋄

10.6.2 Cas plus compliqués

Dans les deux exemples ci-dessus, h(x) était un petit polynôme, que l’on a pu directement injecter
dans le DL de g, pour obtenir le DL de g ◦ h. Que faire, alors, si h n’est plus un polynôme?
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Informel 10.24. Par exemple, comment calculer un DL(n) de

f(x) = log(1 + sin(x))

autour de x0 = 0? L’idée est que l’on connaît le DL(n) de log(1 + z) pour z autour de zéro :

log(1 + z) = z − z2

2
+
z3

3
− z4

4
+ · · ·+ (−1)n+1zn

n
+R(z) ,

Comme sin(x) est petit lorsque x est proche de 0, on aimerait utiliser cette expression pour z =
sin(x) :

log(1 + sin(x))

= sin(x)− (sin(x))2

2
+

(sin(x))3

3
+ · · ·+ (−1)n+1(sin(x))n

n
+R((sin(x))) .

Cette jolie formule est correcte, mais ce n’est pas un développement limité (“polynôme+reste”) !
Donc ce qu’on pourrait faire ensuite, c’est utiliser le DL du sinus et l’injecter dans cette expres-
sion...

Théorème 10.25. Soient

1) h(x) une fonction possédant un DL(n) autour de x0, et

2) g(z) une fonction possédant un DL(n) autour de z0 = h(x0).

Alors f(x) := g(h(x)) possède un DL(n) autour de x0, dont la partie principale s’obtient comme suit : on
injecte la partie principale du développement de h(x) dans la partie principale du développement
de g(z), on développe, et on ne garde que les termes qui sont des puissances de x− x0 plus petites
ou égales à n.

Preuve: Nous omettons la preuve, en reconnaissant qu’elle représente un calcul assez fastidieux, qui pour-
tant ne représente aucune difficulté particulière. (Il s’agit en gros de savoir développer les puissances d’un
polynôme, et de regrouper correctement les termes, pour voir tout ce qui part dans le reste.)

Informel 10.26. Ce qui est pratique, dans ce procédé, c’est qu’on peut se concentrer uniquement
sur les parties principales, on n’a pas besoin de regarder les restes de trop près !

Exemple 10.27. Cherchons le DL(3) de f(x) = log(1+ sin(x)) autour de x0 = 0. On commence par
identifier la composition : f(x) = g(h(x)), où g(z) = log(1 + z), h(x) = sin(x). Prenons un DL(3)
pour h(x),

sin(x) = x− x3

3!︸ ︷︷ ︸
principale

+x3εs(x) .

et un DL(3) pour g(z) :

log(1 + z) = z − z2

2
+
z3

3︸ ︷︷ ︸
principale

+z3εlog(z) .

Maintenant, on injecte la partie principale du DL(3) du sinus dans la partie principale du DL(3)
du logarithme, on développe, on regroupe les puissances en ordre croissant, et on ne garde que
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les puissances ⩽ 3 :

z − z2

2
+
z3

3

∣∣∣
z=x−x3

3!

=
(
x− x3

3!

)
− 1

2

(
x− x3

3!

)2
+

1

3

(
x− x3

3!

)3
= x− 1

2
x2 +

1

6
x3︸ ︷︷ ︸

puissances⩽3

+ · · ·︸︷︷︸
puissances >3

Donc le DL(3) de f autour de x = 0 est donné par

log(1 + sin(x)) = x− 1

2
x2 +

1

6
x3 + x3ε(x) .

⋄
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