Chapitre 10

Développements limités

10.1 Introduction

(ici, Video: v_DI_intro.mp4)

Rappelons que la dérivabilité d"une fonction f en un point z, permet de la représenter au voisi-
nage de ce point :

f(@) = f(zo) + (f'(x0) + 72 () (x — T0)
= f(wo) +['(w0)(® — T0) + 74 () (x — 70),
oEe/z_é:o =R(z), reste
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Cette derniere expression doit étre lue de la fagon suivante : pour un x proche de z(, f(x) se
calcule en prenant

1) sa valeur en ¢, f(xo), a laquelle il faut rajouter...

2) une correction linéaire en x — o, f'(xo)(x — o), a laquelle on rajoute encore...

3) unreste R(x) = (x — zg)ry, ().

La somme des trois termes donne exactement f(x), et ils sont en ordre décroissant d’importance
(voir la figure ci-dessus) : la correction linéaire est petite puisque z — z, est petit, et le reste est
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10.2. Définition et unicité

petit puisque lim,_,,, R(x) = 0. Mais en fait le reste est beaucoup plus petit que la correction
linéaire, puisque

lim R(z) = lim r,(z) =0.

r—x0 L — l’o T—T0

Informel 10.1. En d’autres termes, R(x) est “doublement” petit, puisque c’est le produit de x — zg
(qui est petit lorsque = est proche de ) par r,,(z) (qui est aussi petit lorsque z est proche de z).

Exemple 10.2. Considérons f(z) = €%, au voisinage du point =, = 0. Si on s’intéresse par exemple
au point z = 0.3, on obtient

£(0.3) = £(0) + f/(0)0.3+0.3r¢(0.3) = 1.3498.....
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Une question naturelle est de savoir si il est possible d’obtenir une approximation de la fonction
qui aille au-dela de I'approximation linéaire (et de son reste) : pour un point fixé = # x,, peut-on
approximer f(z) a l'aide d’une expression qui soit plus précise que I'approximation linéaire ?

La premiére amélioration naturelle serait une approximation quadratique (du deuxieme ordre), qui
du point de vue graphique consiste a approximer le graphe, localement, par une parabole plutot
que par une droite. Une telle approximation, si elle existe, est plus précise puisqu’elle doit tenir
compte de la courbure du graphe dans le voisinage du point.

Apres I'approximation quadratique, on pourra essayer de produire une approximation cubique,
et ainsi de suite, on pourra considérer des approximations d’ordres de plus en plus grand, a
'aide de polyndomes. C’est le but de ce chapitre que de présenter cette construction, et de donner
des conditions sur f qui garantissent que ces approximations sont possibles.

Informel 10.3. Certaines formules/expressions, dans ce chapitre, sont assez longues. On pourra
donc augmenter la largeur du texte visible avec les boutons “+” et “—" dans la barre ci-dessus.

10.2 Définition et unicité

Un développement limité permet de représenter une fonction au voisinage d'un point z, a l’aide
d"un polynome :
f(z) = polyndme(z) + R(x) .

Le polyndme approximera bien la fonction dans le sens ot la valeur du reste R(x) doit étre négli-
geable proche de z(, dans un sens tres précis :
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Définition 10.4. Soit f définie au voisinage de zy. On appelle développement limité d’ordre n de
f autour de z, une représentation de f(x) de la forme

f(x) = ag + a1(z — 10) + ag(z — 20)* + - - - + an(z — 20)" + R(7),

N

ou

* les ag, a1, as, ..., a, € R sont des coefficients (constants), et le polyndéme
p(z) = ag + a1(z — 2¢) + az(x — 20)* + - - - + an(z — )"

est appelé partie principale du développement, et
* le reste R(x) est de la forme
R(z) = (z — m)"(2),
ot1 £(z) est une fonction définie dans un voisinage épointé de x, telle que

xlig:lo g(x)=0.

Remarque 10.5.  x Remarquons que dans le cas n = 1, la partie principale n’est autre que la
droite tangente en xz, et dans le reste R(z) = (x — x¢)e(x), la fonction ¢(z) représente r,,(x) :

f(@) = f(xo) + f'(w0)(x — x0) + (2 — 20)72o ()
—— —— —_—

=ag =a1 =R(z)
* On évitera de trop alourdir I'écriture, en omettant d'indiquer la dépendance de R(x) et &(x)
en f, n, et xy (une notation plus précise serait Ry, (), €f.10.n()).

* Il est important, la plupart du temps, de souligner que plus x est proche de x, plus le reste
devient négligeable par rapport a la partie principale! Plus précisément, le reste est toujours
plus petit que le terme de la partie principale de plus grand degré. En effet, pour tout
k=0,1,2,...,n,

. R(CL’) . n—=k
A e —agp (e =0,

C’est pour cette raison que la partie principale fournit une bonne approximation de la fonc-
tion au voisinage de x.

* Dans la suite, pour abbréger “développement limité d’ordre n”, on écrira simplement “DL(n)”.
o

La fagon tres précise dont le DL(n) a été défini a une premiére conséquence importante : lorsqu’il
existe, il est unique.

Lemme 27. Si f possede un D L(n) autour de x, alors les coefficients ag, a1, . . . , a, et la fonction e(z) et
sont uniques.

Preuve: Supposons que f possede un DL(n) en zy, et qu'il y ait deux fagons de I'écrire, la premiere étant
f(z) = ag+ a1(z — 29) + az(z — 20)> + -+ + an(x — 20)" + (x — 70)"e1(2),

la deuxiéme étant
f(@) =bo+bi(z — x0) + ba(x — 20)* + -+ - + bp(x — 20)" + (x — 30)"e2(7) ,

En prenant x — z(, on a donc d"une part

2255, 1) = 0,
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et d’autre part

2255, 1) =bo.

ce qui implique ap = by. Ensuite, remarquons que

iy £ (®) — a0
r—=x0 X — X

= lim (a1 + as(z — 20) + -+ + an(x — 20)" ' + (z — 20)" &1 (2))
Tr—T0

—0

=ay,
qui puisque ag = by est aussi égale a

lim f(x) —bo
T—=To T — TQ

= lim (b1 4 ba(x — ) + -+ - + bp(z — 20)" 4 (x — xo)”_IEQ(a@))

Tr—xTQ

—0

:bl )
donc a; = by. En procédant ainsi, on montre ensuite que az = by, ag = b3, ..., a, = by,. Finalement,

f(x) = {ao + ai(x —x0) + -+ + an(z — 20)"}

€1 (SU) =

(x — zo)™
_ f(@) = {bo + b1(z — o) + - + bp(z — 20)"}
(x — xo)"

= 62(:6) .

(Donc le reste, est une fonction en général compliquée, mais que I’on peut toujours exprimer explicitement
al'aide de f(x) et de la partie principale.) O

Informel 10.6. On utilisera ce dernier résultat souvent dans ce qui suit : deés que I'on peut écrire
une fonction f, au voisinage d"un point z,, comme

f(x)=ao+ai(x —xp) + -+ ap(z — 20)" + (z)(z — x0)",
ou lim,_,,, e(x) = 0, c’est qu’on a trouvé le (= 1'unique) DL(n) de f autour de .
Exemple 10.7. Reprenons f(z) = e au voisinage de zy = 0. On sait que
e’ =1+x+ze(x),

avec (x) — 0 lorsque z — 0. Ceci représente un DL(1) en z; = 0.

Montrons maintenant que cette fonction possede un DL(2) en 0, donné par
e’ =1+a+ t2% + 2%(z).

(Attention : la fonction e(x), ici, n’est pas la méme que celle de la ligne précédente!) Pour ce faire
exprimons, explicitement en fonction de z,

e —{l+az+2}
72

e(r) =
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(cette fonction est effectivement définie dans un voisinage épointé de z, = 0), et calculons

e” — {1+ z+ 122}

lim e(x) = lim

z—0 z—0 2
e’ — 1+
B i {—}
z—0 2,1'
e’ — 11
B im —{ }
x—0 2
=0.
Par le théoreme d’unicité, ceci implique que I'expression ci-dessus est bien le DL(2). o

(ici, Video: v_DI,_voir_DI_exp.mp4)

Exemple 10.8. Considérons f(z) = 1, dans un voisinage de 2 = 0. Rappelons la formule obtenue
pour une somme géométrique : pour tout =z # 1,

s 3 . l—antt 1 s
l+oe4+2+2"+- -+ 2" = = — ,
1—x l—2z 1-x

qui permet d’écrire

1
——=1l+a+a’+ - +a" 42"
l—oz ~ ~~ - 11—z

principale ~——

=:e(x)

Puisque lim,_,o ¢(z) = 0, cette expression est bien le DL(n) de f autour de zéro.

partie principale etreste g n=1
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10.3 Propriétés de base

Une conséquence de 1'unicité est qu'un développement limité d’ordre n donne automatiquement
des développements limités d’ordres inférieurs :

Corollaire 11. Si f posséde un DL(n) autour de x,, donné par

f(x) = ag + a1(z — xo) + ag(x — 20)*> + - - - + an(z — 20)" + R(z),
alors pour tout 0 < k < n, f possede un DL(k) autour de x,, donné par

F(2) = ap + ar(z — o) + as(z — 20)2 + - - - + ap(z — 20)* + R(z) .
(Les coefficients ag, a1, . . . , ax sont les mémes, mais le reste est différent.)

Preuve: En effet, pour tout k£ < n, on peut réarranger le DL(n) comme suit :
f(x) =ao+a1(z — x0) + -+ ap(z — 20)* + - + an(x — 20)" + (z — z0)"e(x)
=ag + a1(z — x9) + -+ + ag(x — 20)" + (x — 20)F (apy1(x — 20) + -+ + (z — 20)" Fe(x))
=:£(x)

Comme &(x) — 0 lorsque  — o, l'unicité du DL(k) implique bien que cette derniere ligne est le DL(k)
de f autour de x. O

On peut ensuite obtenir des développements limités de sommes ou de produits de fonctions :

Lemme 28. Soient f, g définies au voisinage de x,, possédant chacune un DL(n) :

f(@) = a0+ ai1(z — o) + az(x — 20)* + -+ + an(x — 39)" + () (z — m9)",
g(x) = bo + bi(x — mo) + ba(w — 0) + -+ - + bn( — )" + 1(z) (2 — 20)".

Alors

1) f + g posseéde aussi un DL(n) autour de x,, donné par
(f +9)(@) = co+ cr(x — zo)+ea(z — x0)* + -+ + calT — T0)" + P(z) (T — T0)",

ol ¢ := ay, + by, et ¢(x) := e(x) + n(x).

2) f - g possede aussi un DL(n) autour de x,, donné par

(f - 9)(x) = do + di(z — o) +da(x — x0)? + - - - + dn(x — 20)" + p(z)(z — z)",

k
oitdi =Y a;bp_j, et limy_y, th(x) = 0.

=0

Preuve: 1. En additionnant les deux DL(n) et en regroupant les termes correspondants aux mémes puis-
sances, on a

f(@) + g(x) =(ao + bo)
+ (a1 + b1)(x — o)
+ (an + by)(x — z0)"
+ (e(z) + n(z))(z — 20)" .
=:¢(x)
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Comme lim,_,,, ¢(x) = 0, 'unicité du DL fait que 'expresion ci-dessus est bien le DL(n) pour f + g.

2. Considérons pous simplifier le cas n = 2. Et pour y voir clair, écrivons les parties principales de maniere
plus compacte :

ou

p(z) = ao+ a1(z — x9) + az(x — :UO)2
q(x) =bo+ b1(z — x0) + ba(x — xg)z .

En multipliant les deux DL(2), et en regroupant, on obtient

f(x)g(x)
= p(z)q(z) + p(z)n(z)(z — 20)* + q(2)e(z)(x — 20)* + e(a)n(z)(z — z0)*
= p(2)g(x) + (z — 20)” (p(x)n(@) + g()e(x) + e(2)n(z)(z — 0)?) ,

=up1(z)

ot Y1 (z) — 0 quand = — x¢. Ensuite, calculons explicitement le produit des parties principales, et regrou-
pons les puissances :

p(z)q(x) = aobo
+ (aob1 + a1bo)(z — o)
+ (agbe + a1by + agbp)(z — z¢)
+ (a1by + aghy)(z — z0) + agba(z — x0)?,
— 2 (2)(—0)?

2

ot YPa(x) — 0 quand = — . On a donc, en posant ¢ (z) := ¢ (z) + (),

f(@)g(z) = aobo
+ (aob1 + a1bo)(z — o)
+ (aobz + a1b; + agbo)(w — x0)2
+ () (z — 20)°.
ce qui démontre la formule dans le cas oli n = 2. Le cas général se traite de fagon similaire. O

Exemple 10.9. Considérons

flx) = au voisinage de zo = 0.

On a déja calculé plus haut les DL(2) de e” et ﬁ,

1
ezzl+x+§x2+x25(9&),

-1 2 2
— +a+a° +2*n(x),

Dong, par le lemme précédent,

1
e$~1—:(1-1)+(1-1—|—1«1):c+(1~1—|—1-1+%-1)x2+$2¢($)
— T

=1+ 22+ 32 + 2%(z).
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10.4 La formule de Taylor

Maintenant, pour une fonction f donnée, on aimerait

» Donner une condition suffisante sur f pour garantir qu’elle possede un DL(n) en un point
xo.

* Savoir comment calculer les coefficients ag, aq, . . ., a, et le reste.

Sans surprise, 'existence d'un DL sera garantie si la fonction est suffisamment /isse dans le voisi-
nage de .

10.4.1 La formule

Rappelons que pour un intervalle ouvert I, C*(I) désigne 1'ensemble de fonctions k-fois déri-
vables, dont les dérivées () = £/ f@ . f(*) sont toutes continues.

Théoréme 10.10. Soit I un intervalle ouvert, et f € C*1(I). Alors quel que soit o € I, f possede un
DL(k) autour de x, donné par

f(3)(x0)
3!

f(2) (z0)
2!

f(k) (z0)
k!

f(@) = f(zo)+ f(0) (x —20) + (z—x0)* + (z—20)°+- -+ (z—z0)* +R(),

oit le reste R(z) = (z — x0)*e(x), et oit la fonction e(z) est donnée par

£

e(z) = (z — xO)m )

et u est un réel entre x et x, qui dépend de x, z, k, f.

L’expression ci-dessus, qui exprime le DL(k) dans lequel les coefficients impliquant les dérivées
d’ordre supérieur de la fonction, est la Formule de Taylor; lorsque zy = 0, c’est la Formule de
MacLaurin.

Preuve: Fixons un point zg € I, puis étudions f(z) en un autre point z € I, z # xy. Sans perte de généralité,
supposons que zo < x. Considérons le nombre A,, défini implicitement par

A
k+1)

) (5
(gv—:co)z—f—---—l-fkk('())(QL'—JJ())k—i—(av—an'o)k’drl

f(2)(x0)

f(@) = f(x0) + f'(wo) (w — w0) + =

(Cela signifie que si on le désire, on peut savoir ce que vaut A, en l'isolant dans cette derniere expression.)

Avec z et x fixés, on introduit la fonction ¢ : [z, ] — R, définie par

olt) 1= f(@) = { FO) + £ W)z — 1)+ f(z)!(t) ot 4ot IO e t)’“ﬂL} .

Remarquons que ¢ satisfait aux hypotheses du Théoreme de Rolle :

* (t) est continue sur [z, z], et dérivable sur |z, z[. En effet, les puissances de ¢ qu’elle contient sont
évidemment dérivables, et comme on suppose que f est k + 1 fois dérivable, toutes les dérivées
FO), ..., f®)(t) apparaissant dans ¢(t) sont continues.

* (o) = p(x) = 0.
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Il existe donc un point u €|z, z[ tel que ¢’(u) = 0.

“"_r

Maintenant, dérivons ¢ par rapport a t. (On rappelle que dans cette dérivation, “z” est considéré comme
une constante!)

o =0 [y + -y + (206 u) 4 (P00 ) (o oy
= {rm+ (0@ - -+ ( ) f<21>!(f> )
- (f(;)!(t) (z = 1)°
n
(L0 e SO0 e )

En profitant du téléscopage,

T — k
0= U, ),

En utilisant cette expression au point ¢ = u défini ci-dessus,

oy (=)
0=¢'(u) = T (Aw f (u)) )

Puisque 79 < u < x, on a (x — u)* # 0, ce qui implique
Ay = f(k+1)(u) )

et prouve la formule de Taylor.

Pour montrer qu’on a vraiment obtenu un DL(k), il reste a étudier le reste, qui est donné par

FE ()

e(z) = (z — xo)m :

Considérons un petit intervalle fermé autour de xg : J = [zg — 6,29 + 8] C I. Puisque f € C*TI(I), la
continuité de f*+1) sur I implique qu’elle est bornée sur J : il existe une constante C telle que

A @) < C Vo e J.

En particulier, | f*1) (u)| < C, ce qui implique que sur J, |(z)| < (kfl)! |z — zo|. En particulier,
cclig;lo g(z)=0.

(ici, Video: a_breaking_bad_DL.mp4)

O

Informel 10.11. Le résultat ci-dessus est intéressant, mais ses hypotheses peuvent en fait étre af-
faiblies : il existe un résultat similaire, mais qui garantit I’existence d'un DL(k) pour une fonction
k fois (et non pas k + 1 fois) continiment dérivable. L’avantage de la formulation ci-dessus est
que le reste est exprimé de fagon tres explicite, ce qui permettra d’utiliser le résultat efficacement
au chapitre suivant.

Donc la formule de Taylor nous dit que 1’on peut obtenir un développement limité en z, d’ordre
arbitrairement grand, a condition que la fonction soit suffissmment dérivable en z, et dans son
voisinage, et que 1’on sache calculer ses dérivées f*) ().
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Exemple 10.12. Considérons
f(x) =¢€" au voisinage de zp = 0.

Comme e” est de classe C**1 pour tout k, elle possede des développements limités de tous les
ordres. On a f)(z) = e* et donc fU)(0) = 1 pour tout j. Par la formule de MacLaurin,

2 1'3 k

xXr
6—1+ZL’+§+§+ +E+R()

ot R(x) = x*e(x), et
eu

“k+ 1)

e(z) =

pour un certain u €]0, z|.

partie principale et reste

n=1

e

3
Exemple 10.13. f(z) = - autour de z, = 0. Puisque f n’est pas définie en 2 = 1, on la considere

par exemple dans I’ ouvert 1,1[. Ecrivons f(x) = (1 — 2)~!, et calculons ses dérivées :

] -

D(w) = (1)1 - 2)7(-1)

P(a) = (-1)(=2)(1 - 2)*(-1)?
(96) = (=D(=2)(=3)(1 = 2)"*(-1)°

f"“)(x) = (=1)(=2)(=3) -+ (=k)(1 = 2) TV (=D)".

On a donc fU)(z) = W pour tout j, ce qui donne

FO(0) = !
Par la formule de MacLaurin,
1 2 3 k
T2 =l+z+a"+a°+- -+ +R(),
qui est bien ce que nous avions trouvé plus haut. o

Exemple 10.14. Considérons f(x) = sin(z) en xzy = 0. Rappelons que
f®(z) = sin(z + k%),

donc f®(0) = 0 pour tous les k pairs, ce qui a pour conséquence que le développement de
MacLaurin ne contient aucune puissance paire. On a par exemple le DL(3),

3

sin(z) = z — % + R(z)
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oule DL(5) :

3 {L'5

, x
31n(m):x—§+a+R(a:).

partie principale et reste

3

n=>5

——

<

Remarque 10.15. Si on dispose d'une calculatrice qui ne connait pas les fonctions trigonomé-
triques, on peut utiliser des développements limités. Pour illustrer le procédé, supposons que
I'on veuille calculer le sinus d'un angle de 1 radian, sin(1), sans calculatrice. En allant jusqu’a
I'ordre 9, 'approximation par la partie principale

[l T L

fournit déja une approximation remarquable, pour tout x € [—, 7|. Si on l'utilise pour z = 1:
sin(1) ~ 0.8414710097 (ordre 9)
Si on compare avec la valeur “exacte” obtenue avec une calculatrice :

sin(1) = 0.841470984808 - - (exact) .

o
Exemple 10.16. f(x) = cos(xz) enzy =0
2 4
cos(xz) =1— o tot R(x)
o
Exemple 10.17. f(z) = log(1 + x) en xy = 0. Les dérivées se calculent facilement :
fOz) = (1+a2)
fOz) = (D)L +a2)
fO2) = (-1)(-2)(1 +2)~°
FOx) = (D) k= D1 +2) 7",
ce qui donne
fRO) (=DM =D (=D
K k! -k
On aainsile DL(k) :
2?2 2! o1 L
log(l—i—:c)—1:—7—1—?—24—-“—1—(—1) ?—FR(QZ).
o
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10.4.2 A propos de I'existence d’un DL

10.5 Utilisation de DL pour le calcul de limites

Les développements limités fournissent un moyen tres précis d’approximer une fonction au voi-
sinage d"un point, a I'aide d’un polyndéme. Et les polyndmes étant des objets tres simples a mani-
puler, I'utilisation de développements limités peut grandement simplifier 1’étude d"une fonction
en ce point.

Par exemple, ils peuvent étre utiles pour le calcul de certaines limites.

wQr

Dans toutes les indéterminations 0

lim Lx)

2=z (1)
rencontrées précédemment, on étudie un quotient de deux fonctions dont les valeurs deviennent
toujours plus petites a mesure que z se rapproche de . Lever I'indétermination c’est, en somme,
arriver a expliciter la “petitesse” de chacune des deux fonctions, de fagon suffisamment précise
pour arriver a pouvoir calculer la valeur du quotient lorsque z est proche de .

Y

Exemple 10.18. Considérons I'indétermination “3” dans la limite

-1
lim cos(z)
z—0 ,1'2
On a déja calculé cette limite (en multipliant et divisant par le conjugué cos(x) + 1), mais voyons

comment utiliser un DL pour approcher le probleme de facon différente.
Comme on s’intéresse a = proche de 0, on peut utiliser le DL(2) du cosinus vu plus haut,
1’2
cos(x) =1— o + z%e(2),

ou on rappelle que () — 0 quand # — 0. Ce DL permet de montrer que la “petitesse” du
numérateur de notre quotient est en fait quadratique en z, puisque

cos(z) — 1= —% + 2%e(7) = (—% +e(z))2”.

(Une “petitesse en 22 donc.) Ceci donne

cos(z) — 1 L4 e(@))2? 1
( 2 _ ( 2 2( )) - _ + 6(1‘) .
x T 2

Cette expression montre, de maniere transparente, que ce quotient est proche de —% quand x est
proche de 0. En effet, puisque lim,_,o e(x) = 0, la limite est
cos(z) -1 1

. . 1
lim — 53— =5 tlmelz) = -5

<

Informel 10.19. Attention : lorsqu’on utilise un DL(n), on utilise le fait que la fonction “c(z)”
est petite proche du point considéré. Pourtant, on ne sait en général pas estimer précisément la
petitesse de ¢(z)!

Parfois, pour arriver a décrire précisément la petitesse d'un terme, il est nécessaire de choisir un
DL d’un ordre suffisamment grand, comme dans I'exemple suivant :
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Exemple 10.20. (Sur 'importance du choix de I'ordre du DL.) Etudions
)2 2

lim (sinz)* — 2° cos(z)

=0 22(1 — cosx)

Numérateur et dénominateur sont petits quand z est proche de 0, et des DL vont permettre de
quantifier précisément leurs petitesses respectives. Par contre, on va voir qu’il sera nécessaire de
prendre un développement d’ordre suffisamment élevé pour conclure.

1) Commengons simplement, en prenant le DL(1) pour le sinus et le DL(2) pour le cosinus.
On nomme les restes différemment pour pouvoir les distinguer :
22
sin(z) = x + zes(x) cos(z) =1— o + 2?e.(z) .

Alors le numérateur devient

(sinz)® — 2° cos(z) = (z + 1‘85(1'))2 —2%(1— ”g—? + 2% (z))

= 22%,(v) + 2?e,(7)* + % + zte.(z)

(. S
~

77

Dans cette expression, tout est petit, mais aucun terme ne domine clairement les autres. Il
est donc nécessaire d’aller a un ordre plus élevé.

2) Prenons le DL(3) pour le sinus, en gardant le DL(2) pour le cosinus :
z3 z?
sin(z) =z — 31 + 2%e4(7) cos(x) =1— o + 2?e.(7) .
Alors le numérateur peut s’écrire
(sinz)? — 2% cosx

= (z - “”g—? + x355(:v))2 —z*(1 - ’;—? + 2%, (7))
1

= 6x4 + 2t (("’3!2)2 + 22e,(2)? + 2e4(z) — ”g—?as(x) — ec(2))
E;(rx)
1 4
= <6 + 5(x)>m .

Maintenant, on comprend que la petitesse du numérateur est en z*.

Ensuite, le dénominateur devient

2*(1 —cosz) = x2{1 - (1 - % + $2€c($)>}

et représente donc aussi une petitesse en z*. Donc

(sinz)? — 22 cos(z) (3 +e(x))z?

lim = lim
20 x%(1 — cosx) z—0 (% —gq(x))x?
1
s telw
= lim —16 (%)
2=0 5 — 56(1;)
1
-3
Remarquons que dans ce calcul, on a vraiment travaillé partout avec des égalités! o
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10.6 Composition de DL

Supposons qu’on veuille un DL(n) d'une fonction f autour d'un point z,, et que cette fonction
soit en fait une composée :

f(x) = (goh)(x) = g(h(x)).

On supposera, pour simplifier I'exposition, que les fonctions g et h possedent des dérivées de tous
les ordres.

Informel 10.21. A priori, on pourrait utiliser la formule de Taylor, qui permet d’obtenir un déve-
loppement limité pour f en passant par les dérivées fU) (), ..., f*)(z4). Mais puisque f est une
composée, le calcul de f*)(zy), pour k grand, risque bien d’étre compliqué...

10.6.1 Cas simples

Voyons un exemple simple de composée dans lequel on peut éviter de passer par le calcul des
grandes dérivées de f.

Exemple 10.22. Fixons un entier n, grand, et cherchons un DL(n) de

1
fz) = 152
autour de x = 0. Cette fonction peut s’écrire
1
f@) =] =glh(x)),
ou
or)= 1 hlx) =

Pour g, on a déja calculé le DL(n) autour de z, = 0,
g(2)=14+z+22+22+ -+ 2"+ R(2),

ol R(z) = z"¢(z). Comme z = h(x) = —z? est proche de 0 lorsque z est proche de z, = 0, on peut
I'injecter directement dans le DL de g, ce qui donnele DL de f =goh:

g(h(x)) =1+ h(x) + h(x)* + h(z)® + -+ h(2)" + R(h(z))
=1—a?+a2t =25+ 4 (=1)"2™ + R(—2?)

Si on regarde le reste de plus pres,
R(—2?%) = (—2*)"e(—2?) = 2™&(z),

oll on a posé £(x) := (—1)"e(—a?), qui tend bien vers zéro lorsque = — 0.

On a donc
f(ZU) =1— 22 +;p4 _ 6 4+t (_1)711,271 —I—l‘Qné(:L‘) ‘

o

On peut utiliser une idée semblable pour des développements qui ne sont pas forcément autour
dex=0:
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Exemple 10.23. Soit

fa) = =

x.

Cherchons un DL(n) de f autour de x( = 3. Ici aussi, on pourrait facilement calculer les dérivées
de f d’ordre quelconque (voir plus bas), mais on peut aussi récrire f en utilisant le fait qu’on
I’étudie autour de z¢y = 3 :

11
z 3+ (z—3)
1 1

ot g(z) = 1 et h(z) = —%52. Quand z est proche de zy = 3, z = h(z) est proche de zéro; on peut

donc directement injecter i(x) dans le DL(n) de g :

fla) = %{1 (@) + h(@)? + h(z) + -+ hz)" + R(h(z))}
_ %{1 - é(m _3)+ %(w B L (_3?”(;(; —arR-200)
= é — %(x—3)+%(w—3)2 — 3—14(1:—3)3—1--- + (;i)ln(x—?))"—l—f%(x)

Remarquons que 1’on tombe bien ce qu’on aurait trouvé en passant par la formule de Taylor. En
effet, si f(z) = 2, alors

() = (1)l

et donc

fmE) (=

n 3n+1 :

10.6.2 Cas plus compliqués

Dans les deux exemples ci-dessus, h(z) était un petit polyndome, que ’on a pu directement injecter
dans le DL de g, pour obtenir le DL de g o h. Que faire, alors, si h n’est plus un polyndme?
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Informel 10.24. Par exemple, comment calculer un DL(n) de

f(z) = log(1 + sin(x))
autour de zy = 0? L'idée est que 1’on connait le DL(n) de log(1 + z) pour z autour de zéro :

22 L3 b (_1)n+1zn

log(l+z2)=2——+——="+---+

2 "3 1 ]

Comme sin(z) est petit lorsque x est proche de 0, on aimerait utiliser cette expression pour z =
sin(x) :

log(1 + sin(z))

= sin(z) — <Sin<2x>) + (Sinéx)) PR Sin(x))n + R((sin(2))) .

Cette jolie formule est correcte, mais ce n’est pas un développement limité (“polynome+-reste”)!
Donc ce qu’on pourrait faire ensuite, c’est utiliser le DL du sinus et l'injecter dans cette expres-
sion...

Théoreme 10.25. Soient
1) h(z) une fonction possédant un DL(n) autour de x, et
2) g(z) une fonction possédant un DL(n) autour de zy = h(xo).

Alors f(x) := g(h(x)) possede un D L(n) autour de x,, dont la partie principale s’obtient comme suit : on
injecte la partie principale du développement de h(x) dans la partie principale du développement
de g(z), on développe, et on ne garde que les termes qui sont des puissances de x — x, plus petites
ou égales a n.

Preuve: Nous omettons la preuve, en reconnaissant qu’elle représente un calcul assez fastidieux, qui pour-
tant ne représente aucune difficulté particuliere. (Il s’agit en gros de savoir développer les puissances d'un
polyndme, et de regrouper correctement les termes, pour voir tout ce qui part dans le reste.) O

Informel 10.26. Ce qui est pratique, dans ce procédé, c’est qu’on peut se concentrer uniquement
sur les parties principales, on n’a pas besoin de regarder les restes de trop pres!

Exemple 10.27. Cherchons le DL(3) de f(x) = log(1 +sin(z)) autour de zy = 0. On commence par
identifier la composition : f(z) = g(h(x)), ot g(z) = log(1l + 2), h(x) = sin(z). Prenons un DL(3)
pour h(z),
1.3
sin(x) = o — ol +ade,(x) .
——

principale

et un DL(3) pour g(2) :
22 .3
log(1+2) ==~ o+ o +2%2,(2).
—_——

principale

Maintenant, on injecte la partie principale du DL(3) du sinus dans la partie principale du DL(3)
du logarithme, on développe, on regroupe les puissances en ordre croissant, et on ne garde que
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les puissances < 3 :

2+23 ( x3> 1( x3)2+1< x3)3
z—— 4+ — =(z—=)—=(z— = —(z— =
3 lz=e—22 3! 2 3! 3 3!
Lo, 13
N———— puissances >3
puissances<3
Donc le DL(3) de f autour de x = 0 est donné par
- Lo, 1s, 3
log(1 +sin(z)) =z — 3% + g% + z°e(x) .
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