Chapitre 14

Compléments

14.1 exp et log

Il existe plusieurs manieres de définir rigoureusement les fonctions exponentielles et logarithme,
mais toutes commencent par en construire une pour ensuite obtenir 1’autre.

Dans cette section, on construit d’abord la fonction exponentielle a I'aide d'une série de puis-
sances, on étudie ses propriétés, et on 1'utilise ensuite pour construire la fonction logarithme.
(Dans la section suivante on fera le contraire.)

Considérons la série numérique ) ., a,(z) avec parametre z, pour laquelle

x
an(z) = oy
Puisqu’on a, pour tout z € R, que
lim %+_1(x) — lim ﬂ:()’
n—00 an(qj) n—oo 1 + 1

le critere de d’Alembert implique que la série ) . a,(z) converge absolument, et définit ainsi
une fonction sur tout R.

Définition 14.1. On appelle exponentielle la fonction

exp: R — R
xn
x — exp(z) == Z -
n=0
Remarquons que par définition,
exp(0) =1.

Toute I'importance de cette fonction réside dans sa propriété fondamentale : elle transforme les
sommes en produits. Plus précisément :

Théoreme 14.2. Pour tous x,y € R, on a

exp(z + y) = exp(z) exp(y) .

Preuve: Par définition,

N n
exp(z +y) = lim Z M

N— n!
Oon=0
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Par la formule du bindme, pour tout n > 0,

ce qui permet d’écrire

n=0 =0 k=0
N N
_ 1 k n—k
=22 Kn— k)" Y
k=0 n=~k
N N _
Sy
| 22 (n—k)!
k=0 n=~k
N . N—k
ey
— ' !
k=0 " 1=0

La deuxiéme s’estime comme suit : puisque ) ;" " - < exp([y]),
N L N—k N r N—k 1
x y || Yl
DD DV DI
k=N'+1 " =0 k=N'+1 1=0
o lal*
< exp(|y]) Z T
k=N'+1

qui tend vers zéro lorsque N — oo. On peut ensuite écrire la premiére somme ainsi :

N’ .Z'k N—k yl
Kl L
k=0 1=
N’ ZL’k N’ l’k N—k yl
=exp(y) D7 =D (explv) — > 7,>
k=0 k=0 =0
= exp(z) exp(y)+
N’ $k N’ I‘k N—k yl
exp(y) (Z i exp(fv)) - (exp(y) - 7,) ,
k=0 k=0 =0

D’une part,

N—oo

N’ .ka
lim Z i exp(z),
k=0
et d’autre part, pour tout ¢ > 0 on a que, pour tout N suffisamment grand, et pour tout k£ < N/,

N—

‘eXp(y) -

=

B

!
)

‘ <

‘ga,
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qui permet de majorer
N—

N’ CL‘k yl
‘kzok!(exf’(y) > 7.)‘ < elexp(y)

=

=

On a donc bien démontré que

N
. x+y)"
exp(e +y) = lim_ > (n,) = exp(z) exp(y) -
n=0 ’

O

Cette propriété rappelle celle de la fonction “puissance” en arithmétique, n — a”, qui transforme
aussi les sommes en produits : pour toute base a > 0,

a™ " = aqma" Vm,n € N.

La base se retrouve en prenantn = 1:a' = a.
Pour cette raison, on utilise souvent la notation

exp(z) =e”,

ol le nombre

1
e:=exp(l) = E 1= 2.718---
n=0

En bas de page, on montre que ce nombre est en fait le méme que celui défini dans la section sur la
série géométrique (lien vers la section m_suites_serie_geometrique), et qu’il est irration-
nel.

Voyons des conséquences de la propriété fondamentale :

1
xp(@)’

Corollaire 13. Pour tout x € R, exp(—z) =

Preuve: En utilisant le théoréme,
1 =exp(0) = exp(x + (—x)) = exp(z) exp(—2x) .

O

Puisque exp(z) > 1 > 0 pour tout z > 0, le corollaire implique que 0 < exp(—z) = expl(x) <1

pour tout x > 0. En particulier, exp(z) > 0 pour tout = € R, donc on peut écrire plus précisément
I’ensemble d’arrivée de I'exponentielle :

exp: R — R}
x — exp(x).

Théoreme 14.3. L’exponentielle est dérivable sur R, et
(exp(:v))/ = exp(z) Ve e R.
Preuve: 11 s’agit de calculer

exp(z + h) — exp(x) exp(z) exp(h) — exp(x)

p h = i h
= exp(x) lim exp(h) — 1 .
h—0
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Or

ce qui entraine, lorsque |h| < 1, et puisque (j + 1)! > 1,

exp(h) —1 1’ <% |}

j !
h = (1+1)
< 2_InP
j=1
o
1—|hl"
(On a sommé la série géométrique.) On a donc
lim % =1,
h—0 h
ce qui démontre l’affirmation. O

Une conséquence immédiate de ce dernier résultat : étant dérivable partout, = — exp(z) est conti-
nue. On utilise ce fait pour démontrer :

Proposition 20. exp : R — R est une bijection.

Preuve: Remarquons que si z > 0, alors %’f > 0 pour tout k& > 2, et donc
exp(z) > 1+ Vx>0,

qui entraine
lim exp(x) =400,

T—+00
ainsi que
li (2) li (—y) li ! 0
1m exp(xr) = 1m  exp(— = 11m = V.
T—>—00 P Y—+00 Pty Y—+00 exp(y)

Fixons maintenant y > 0. Les deux limites ci-dessus impliquent qu’il existe a et b tels que exp(a) < y <
exp(b). Par le Théoreme de la valeur intermédiaire appliqué a exp : [a,b] — R, on en déduit qu’il existe
x €]a, b tel que exp(x) = y. Ceci montre que Im(exp) = R, et donc que la fonction est surjective.

Montrons qu’elle aussi injective. Pour ce faire, remarquons que si z < ’, le Théoreme des accroissements
finis implique qu’il existe ¢ €]z, 2'[ tel que

exp(z’) — exp(z)

P = exp’(c) = exp(c).

Puisque exp(c) > 0, on en déduit que exp(z) < exp(z').
Ainsi, exp : R — R est bijective. 0
On a démontré, en passant, que

lim exp(x) =0, lim exp(z) = 400.
ZT—r—00 T——+00
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exp(z) o

ne

14.1.1 Logarithme
Puisque 'exponentielle est bijective, on peut considérer sa réciproque :

Définition 14.4. La réciproque de exp : R — R’ est appelée logarithme :

log: R} — R
x +— log(z)

Par définition, on a donc

log(exp(x)) = x Vr e R,
exp(log(y)) =y  Vy eR}.

Si I'exponentielle transforme des sommes en produits, sa réciproque doit forcément transformer
des produits en sommes :

Théoreme 14.5. Pour tous =,y € R*,
log(zy) = log(z) + log(y) -

Preuve: Par définition, t = log(zy) si et seulement si exp(t) = zy. Mais = = exp(log(x)) et y = exp(log(y)),
et donc

exp(t) = exp(log(z)) exp(log(y)) = exp(log(x) + log(y)) -
Ceci implique que log(zy) = t = log(z) + log(y). O
D’autres propriétés qui découlent directement du fait que le logarithme est la réciproque de 'ex-

ponentielle : log(1) = 0,

log () <0 si0<z<l
og(x
& >0 siz>1.
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a = 2.000...

log, (2)

=20

rA
LJ

De plus, par le théoréme sur la dérivée de la fonction réciproque, pour tout = > 0, en dérivant les
deux cotés de l'identité

exp(log(z)) =z,

on obtient
exp(log () (l0g(x))' = 1,
qui donne
1 1 1

log(z))' = . _ 1

180 = o/ loa(@)) ~ expllon(a)]  »
Notons encore que

IILI& log(z) = —o0, xginoo log(z) = +o0.

14.1.2 Changements de base

On peut utiliser exp et log pour définir d’autres fonctions, dont les propriétés sont semblables
mais que 1’on interprete comme exponentielles et logarithmes dans des bases différentes.

Soit a > 0, appelé base.

Définition 14.6. L'exponentielle de base a est la fonction

exp, : R = R%
x — exp,(z) = exp(zlog(a)).
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On a bien stir que

exp,(z +y) = exp((z + y) log(a))
= exp(zlog(a) + ylog(a))
= exp(x log(a)) exp(ylog(a))
= exp, () exp,(y) ,

et on utilise aussi la notation exp,(z) = a”.

On peut ensuite calculer

(exp, ()" = (exp(zlog(a)))" = log(a) exp, (v),
——

>0

et puisque le signe de log(a) change, on en déduit que exp,(z) est strictement croissante si a > 1,
strictement décroissante si 0 < a < 1.

a=1461...

Remarquons que 1’on peut maintenant considérer une exponentielle évaluée en un point z > 0,
mais dont la base est elle-méme une fonction a(y) > 0:

eXPq(y) () = aly)” := exp(zlog(a(y)))
En particulier, on a la formule classique : pour tous z,y € R,

(a¥)" := exp(a log(a’)) = exp((y) log(a)) = a”¥ .

Aussi, si la base dépend de x et que I'exposant est une fonction de z, on doit admettre implicite-
ment la définition suivante :

Définition 14.7. Si f(x) > 0, alors

F(@)?@) = exp(g(x) log(f(@))) -
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14.1.3 Définition alternative de ¢

Dans cette section (lien vers la sectionm_suites_serie_geometrique),lenombree = 2.718. ..

a été défini par la limite
1 n
lim (1 + —) .
n—0o0 n

On montre ici que ce nombre est aussi égal a exp(1) :

Théoréme 14.8.

. 1\" 1
in (1+3) =&

Preuve: Définissons
1\" "1
— — / —_—
en—<1+n> ;e =14 ik

On veut montrer que

. . Vi
lim e, = lim e} .
n—r00 N—o0

Rappelons que la formule du bindme de Newton (lien vers la section m_recurrence) permet d’écrire
1
— 1 k-1
en_l""ZH(l_ﬁ)"'(l_T)'
k=1

Puisque 1 — £ < 1 pourtoutj=1,2,...,n — 1, on en déduit que
q n p q
/
en < €,,

et donc que

. . Vi
lim e, < lim e, .
n—o0 n—oo

Ensuite, fixons un entier N, quelconque, et remarquons que pour tout n > N,

N
1 1 k-1
k=1"
En prenant n — oo, ceci donne
i
Jim en >14) o =ely.
k=1

Comme cette derniere inégalité vaut pour tout IV, on a aussi que

. . /
lim e, > lim ey .
N—00 N—o0

14.1.4 Irrationnalité de e

Théoréme 14.9. Le nombre e = exp(1) = >, ., #; est irrationnel.

Preuve: Par 'absurde, supposons que e est rationnel, c’est-a-dire qu’il existe deux entiers p, ¢ € N* tels que

e=—.
q
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Définissons la suite (My,)n>1 :

Par définition, M,, > 0 pour tout n (puisque la suite a,, = >_j'_ 2 est strictement croissante et tend vers e).

Ensuite, notre hypothese permet d’écrire

(P51
k=0

qui implique que lorsque n > g, M), est un entier: M,, € {1,2,3,4,...}. Or on peut remarquer que

=1
:n!ZH

k=n-+1
1 1 1
Tl it D+ T meDmrmts T
SIS SR S SR
“n+l (n+1)2 (n+1)3
1 1
_714-1'1—”%rl
1
T n

On en déduit que M,, < 1 lorsque n > 1, une contradiction puisqu’on a dit plus haut que M,, > 1 est un
entier. =

14.2 log et exp

Dans cette section, on construit la fonction logarithme, on étudie ses propriétés, et on I'utilise pour
en déduire la fonction exponentielle.

1

14.2.1 Aire sous la courbe y =

Pour commencer définissons, pour tous a,b > 0, le nombre

b
I(a,b) := %

a

Sia < b, I(a,b) le nombre s’interprete comme l'aire de la région délimitée par 1’axe Oz, le graphe
de la fonction t — %, et les deux droites verticales d’équations * = aetz = b:Sia > b, la

convention faite sur l'intégrale implique que

I(a,b) = —I(b,a).
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I(a,b) = 1.003...

rn
LJ

Cette fonction de deux variables satisfait aux propriétés suivantes :

Proposition 21. % Relation de Chasles : pour tous réels strictement positifs a, b, c,
I(a,b) + I(b,c) = I(a,c).
* Pour tous 0 < a < b < ¢, et pour tout A > 0,
I(Aa,\b) = I(a,b).

Preuve: La premiere propriété suit de fab f(t)dt+ [, f(t)dt = [ f(t)dt. Pour la deuxiéme, par le changement
de variable s := ¢/ (qui donne dt = Ads) dans I'intégrale définie,

Ab b b
dt Adt dt
Aa a S a S

14.2.2 Définition du logarithme

Définition 14.10. Le logarithme est la fonction

log: R} = R

Tdt
x—log(z) :=I1(1,z) = —
1

log(z) = 1.099...

2y @

rA
(]
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On a en particulier :
log(1) =0.

La propriété remarquable de cette fonction est qu’elle transforme des produits en sommes :
Théoreme 14.11. Pour tous x,y > 0,

log(zy) = log(z) + log(y) -
Preuve: Par la proposition, I(x, zy) = I(y), et donc, en utilisant la relation de Chasles,

log(zy) = I(1, zy)

1,2) + I(x,zy)
1,2)+ I(1,y)
= log(x) + log(y) .

:[(
:[(

Par conséquent, pour tout x > 0,

0 = log(1) = log(x1) = log(x) + log(1) ,

qui donne
log(L) = — log(x).

Théoréme 14.12. Le logarithme est dérivable sur R*, et
1
1 =—.
(log(2))' = =
En particulier, x — log(z) est strictement croissante.

Preuve: Par le Théoréeme Fondamental de I’Analyse, étant défini comme I'intégrale d"une fonction continue,

log est dérivable et
Tdtnt 1
(log(z)) = (/ 7) —-  VzeR}.
1

t T
O
Puisque le logarithme est dérivable, il est continu sur R’
Lemme 33.
lim 1 = lim 1 = —00.
Jim og(z) = +o0, lim og(x) 00
Preuve: Puisque c’est une fonction strictement croissante, il suffit de montrer que
lim log(n) = lim I(1,n) = +oo.
n—oo n—o0
En comparant l'aire sous la courbe avec les rectangles de bases [k, k + 1] sous la courbe, k =1,...,n — 1,
1 1 1 1
I(,n)> =4 =4+ =4k =
(1,n) 5 + 3 + 1 +-+ "

On reconnait dans cette somme la somme partielle de la série harmonique, qui tend vers l'infini lorsque
n — oo.
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L’autre limite est une conséquence de la premiere, puisque par le changement de variable x = i,

lim log(z) = lim log(y)

z—0t y——+0o0
= — lim lo
A log(y)
= —00.

O

Puisque log est continue, les deux limites ci-dessus impliquent que Im(log) = R. Puisqu’elle est
strictement croissante, elle est aussi injective. On a donc montré que log est une bijection.

Définition 14.13. La réciproque de log : R* — R est la fonction exponentielle,

exp: R— R}
x — exp(x),

Par définition,

log(exp(z)) =z Ve e R,
exp(log(y)) =y  VyeR].

On a la propriété fondamentale :

exp(z + y) = exp (log(exp(x)) + log(exp(y)))
= exp(log(exp(z) exp(y)))
= exp(r) exp(y)) .

De plus, en dérivant la relation
= log(exp(z)) ,

par rapport a z,

1 = log/(exp(z)) =

qui entraine

14.2.3 Changements de base

(On peut procéder comme dans la section précédente.)

14.3 Fonctions hyperboliques

On définit ici les fonctions trigonométriques hyperboliques. Méme si ces fonctions seront définies uni-
quement a partir de I'exponentielle, leurs propriétés rappelleront clairement celles des fonctions
trigonométriques de base. En fin de section, on fera quelques commentaires sur l'origine du terme
“hyperbolique”.
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Définition 14.14. Soit = € R.

* Le sinus hyperbolique de z est défini par

e —e
inh(z) (= ———.
sinh(x) >
* Le cosinus hyperbolique de z est défini par
cosh(zx) := ere’
2
* La tangente hyperbolique de x est définie par
tanh(z) := e

Remarquons que

* cosh(z) est paire, que cosh(z) > 1 pour tout z € R .
* sinh(z) et tanh(z) sont impaires, et positives si z > 0, négatives si z < 0.

* On a vu ici (lien vers la section m_fonctions_paires_impaires) que toute fonction
peut se décomposer en une somme d’une fonction paire et d'une fonction impaire. En ap-
pliquant ce résultat a la fonction f(z) = e”, on obtient précisément

e” = cosh(x) + sinh(z).

On peut voir la tangente hyperbolique comme étant définie par

sinh(x)
cosh(z)

tanh(x) =

Un simple calcul mene a

cosh(z)? — sinh(z)* =1,

qui entraine

1
1 — tanh?(z) = ———.
anh(z) cosh?(z)

14.3.1 Dérivées

Puisque e” est dérivable, les fonctions hyperboliques sont dérivables (et continues) sur R. De plus,

(sinh(x))" = cosh(z)
(cosh(z))" = sinh(z)
1

(tanh(x)) = 1 — tanh®*(z) = o2 (@)

Par conséquent, sinh(x) est strictement croissante,
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sinh(z)

X J

cosh(z) est décroissante sur | — oo, 0], croissante sur [0, +o00],

cosh(z)

20

et tanh(x) est strictement croissante :

tanh(z)ﬁ

14.3.2 Propriétés

Théoreme 14.15. Pour tous z,y € R,

sinh(z 4+ y) = sinh(z) cosh(y) + cosh(x) sinh(y)
cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y)

tanh(z) + tanh(y)
h =
tan (1' + y) 1+ tanh(aj‘) tanh(y)

Preuve: (exercice) 0

En prenant y = z, on a les formules
sinh(2z) = 2sinh(z) cosh(x),
cosh(2z) = 2cosh?(x) — 1 = 1 4 2sinh?(2)

2 tanh(x)
tanh(Zx) = HTIM(I*)
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14.3.3 Réciproques

Comme sinh : R — R est strictement croissante, continue, et puisque

lim sinh(z) = —o0, lim sinh(z) = 400,
T——00 r——+00

on en déduit qu’elle est bijective.

Sa réciproque se note

argsinh : R -+ R
x +— argsinh(z)

A T'aide de la formule pour la dérivée d"une fonction réciproque,

1
cosh(argsinh(z))
1
sinh’(argsinh(x))
B 1
\/1 + sinh?(argsinh(z))
1
2+ 1

argsinh’(x) =

On peut en fait exprimer cette réciproque explicitement :

Lemme 34. Pour tout x € R,

argsinh(x) = log(z + V1 + 22).

Preuve: Puisque sinh est impaire, il suffit de fixer y > 0, et de chercher I'unique z tel que sinh(z) = y. En
posant t = e”, cette condition devient
ef —e ™ t—1/t
= = y 5
2 2

qui est équivalente a
t?—2yt—1=0.

Puisque le discriminant de cette équation est A = 4(y* + 1) > 0, elle posséde une unique solution ¢ > 1,
donnée par

2y + VA

On obtient z = log(t) = log(y + /1 + y?) > 0. O

Ensuite, puisque cosh est paire, on doit restreindre son domaine si on veut la rendre injective.
Comme elle est strictement croissante sur R, cosh : Ry — R est injective. De plus, comme
cosh(0) = 1 et

lim cosh(z) = 40,
T——+00

on conclut que cosh : Ry — [1, +00] est bijective.

Sa réciproque se note

argcosh : [1, +oo[ — R,
x +— argcosh(x)
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On a donc, pour tout z > 1,

1
sinh(argcosh(z))
1
\/cosh(argcosh(z))? — 1
1

22 -1

argcosh’(x) =

On peut aussi exprimer explicitement la réciproque : pour tout = € [1, +00],
argcosh(z) = log(z + Va2 —1).

Finalement, tanh étant strictement croissante, continue, et puisque

lim tanh(x) =—1, lim tanh(x) = +1,

T——00 T—+400

on en conclut que tanh : R —] — 1, 1] est bijective.

Sa réciproque se note

argtanh ;] — 1,1 - R
x +— argtanh(z) ,

avec

1+x>

1
argtanh(z) = 5 log(1 —

14.3.4 Origine du terme “hyperbolique”

(en construction)
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