
Chapitre 14

Compléments

14.1 exp et log

Il existe plusieurs manières de définir rigoureusement les fonctions exponentielles et logarithme,
mais toutes commencent par en construire une pour ensuite obtenir l’autre.

Dans cette section, on construit d’abord la fonction exponentielle à l’aide d’une série de puis-
sances, on étudie ses propriétés, et on l’utilise ensuite pour construire la fonction logarithme.
(Dans la section suivante on fera le contraire.)

Considérons la série numérique
∑

n⩾0 an(x) avec paramètre x, pour laquelle

an(x) :=
xn

n!
.

Puisqu’on a, pour tout x ∈ R, que

lim
n→∞

∣∣∣an+1(x)

an(x)

∣∣∣ = lim
n→∞

|x|
n+ 1

= 0 ,

le critère de d’Alembert implique que la série
∑

n⩾0 an(x) converge absolument, et définit ainsi
une fonction sur tout R.

Définition 14.1. On appelle exponentielle la fonction

exp : R → R

x 7→ exp(x) :=
∑
n⩾0

xn

n!
.

Remarquons que par définition,
exp(0) = 1 .

Toute l’importance de cette fonction réside dans sa propriété fondamentale : elle transforme les
sommes en produits. Plus précisément :

Théorème 14.2. Pour tous x, y ∈ R, on a

exp(x+ y) = exp(x) exp(y) .

Preuve: Par définition,

exp(x+ y) = lim
N→∞

N∑
n=0

(x+ y)n

n!
.
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14.1. exp et log

Par la formule du binôme, pour tout n ⩾ 0,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k ,

ce qui permet d’écrire

N∑
n=0

(x+ y)n

n!
=

N∑
n=0

n∑
k=0

1

k!(n− k)!
xkyn−k

=
N∑
k=0

N∑
n=k

1

k!(n− k)!
xkyn−k

=

N∑
k=0

xk

k!

N∑
n=k

yn−k

(n− k)!

=

N∑
k=0

xk

k!

N−k∑
l=0

yl

l!

Définissons N ′ = ⌊N2 ⌋, et décomposons la somme sur k en deux :

N∑
k=0

=

N ′∑
k=0

+

N∑
k=N ′+1

La deuxième s’estime comme suit : puisque
∑N−k

l=0
|y|l
l! ⩽ exp(|y|),

∣∣∣ N∑
k=N ′+1

xk

k!

N−k∑
l=0

yl

l!

∣∣∣ ⩽ N∑
k=N ′+1

|x|k

k!

N−k∑
l=0

|y|l

l!

⩽ exp(|y|)
N∑

k=N ′+1

|x|k

k!
,

qui tend vers zéro lorsque N → ∞. On peut ensuite écrire la première somme ainsi :

N ′∑
k=0

xk

k!

N−k∑
l=0

yl

l!

= exp(y)
N ′∑
k=0

xk

k!
−

N ′∑
k=0

xk

k!

(
exp(y)−

N−k∑
l=0

yl

l!

)
= exp(x) exp(y)+

exp(y)
( N ′∑
k=0

xk

k!
− exp(x)

)
−

N ′∑
k=0

xk

k!

(
exp(y)−

N−k∑
l=0

yl

l!

)
,

D’une part,

lim
N→∞

N ′∑
k=0

xk

k!
= exp(x) ,

et d’autre part, pour tout ε > 0 on a que, pour tout N suffisamment grand, et pour tout k ⩽ N ′,

∣∣∣exp(y)− N−k∑
l=0

yl

l!

∣∣∣ ⩽ ε ,
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14.1. exp et log

qui permet de majorer ∣∣∣ N ′∑
k=0

xk

k!

(
exp(y)−

N−k∑
l=0

yl

l!

)∣∣∣ ⩽ ε| exp(y)|

On a donc bien démontré que

exp(x+ y) = lim
N→∞

N∑
n=0

(x+ y)n

n!
= exp(x) exp(y) .

Cette propriété rappelle celle de la fonction “puissance” en arithmétique, n 7→ an, qui transforme
aussi les sommes en produits : pour toute base a > 0,

am+n = aman ∀m,n ∈ N .

La base se retrouve en prenant n = 1 : a1 = a.

Pour cette raison, on utilise souvent la notation

exp(x) ≡ ex ,

où le nombre
e := exp(1) =

∑
n⩾0

1

n!
= 2.718 · · ·

En bas de page, on montre que ce nombre est en fait le même que celui défini dans la section sur la
série géométrique (lien vers la section m_suites_serie_geometrique), et qu’il est irration-
nel.

Voyons des conséquences de la propriété fondamentale :

Corollaire 13. Pour tout x ∈ R, exp(−x) = 1
exp(x)

.

Preuve: En utilisant le théorème,

1 = exp(0) = exp(x+ (−x)) = exp(x) exp(−x) .

Puisque exp(x) > 1 > 0 pour tout x > 0 , le corollaire implique que 0 < exp(−x) = 1
exp(x)

< 1

pour tout x > 0. En particulier, exp(x) > 0 pour tout x ∈ R, donc on peut écrire plus précisément
l’ensemble d’arrivée de l’exponentielle :

exp : R → R∗
+

x 7→ exp(x) .

Théorème 14.3. L’exponentielle est dérivable sur R, et(
exp(x)

)′
= exp(x) ∀x ∈ R .

Preuve: Il s’agit de calculer

lim
h→0

exp(x+ h)− exp(x)

h
= lim

h→0

exp(x) exp(h)− exp(x)

h

= exp(x) lim
h→0

exp(h)− 1

h
.
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14.1. exp et log

Or

exp(h)− 1

h
=

1

h

∑
k⩾1

hk

k!

=
∑
k⩾1

hk−1

k!

=
∑
j⩾0

hj

(j + 1)!

= 1 +
∑
j⩾1

hj

(j + 1)!
,

ce qui entraîne, lorsque |h| < 1, et puisque (j + 1)! ⩾ 1,∣∣∣exp(h)− 1

h
− 1
∣∣∣ ⩽∑

j⩾1

|h|j

(j + 1)!

⩽
∑
j⩾1

|h|j

=
|h|

1− |h|
.

(On a sommé la série géométrique.) On a donc

lim
h→0

exp(h)− 1

h
= 1 ,

ce qui démontre l’affirmation.

Une conséquence immédiate de ce dernier résultat : étant dérivable partout, x 7→ exp(x) est conti-
nue. On utilise ce fait pour démontrer :

Proposition 20. exp : R → R∗
+ est une bijection.

Preuve: Remarquons que si x > 0, alors xk

k! > 0 pour tout k ⩾ 2, et donc

exp(x) > 1 + x ∀x > 0 ,

qui entraîne
lim

x→+∞
exp(x) = +∞ ,

ainsi que

lim
x→−∞

exp(x) = lim
y→+∞

exp(−y) = lim
y→+∞

1

exp(y)
= 0 .

Fixons maintenant y > 0. Les deux limites ci-dessus impliquent qu’il existe a et b tels que exp(a) < y <
exp(b). Par le Théorème de la valeur intermédiaire appliqué à exp : [a, b] → R, on en déduit qu’il existe
x ∈]a, b[ tel que exp(x) = y. Ceci montre que Im(exp) = R∗

+, et donc que la fonction est surjective.

Montrons qu’elle aussi injective. Pour ce faire, remarquons que si x < x′, le Théorème des accroissements
finis implique qu’il existe c ∈]x, x′[ tel que

exp(x′)− exp(x)

x′ − x
= exp′(c) = exp(c) .

Puisque exp(c) > 0, on en déduit que exp(x) < exp(x′).

Ainsi, exp : R → R∗
+ est bijective.

On a démontré, en passant, que

lim
x→−∞

exp(x) = 0 , lim
x→+∞

exp(x) = +∞ .
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14.1. exp et log

14.1.1 Logarithme

Puisque l’exponentielle est bijective, on peut considérer sa réciproque :

Définition 14.4. La réciproque de exp : R → R∗
+ est appelée logarithme :

log : R∗
+ → R
x 7→ log(x)

Par définition, on a donc

log(exp(x)) = x ∀x ∈ R ,
exp(log(y)) = y ∀y ∈ R∗

+ .

Si l’exponentielle transforme des sommes en produits, sa réciproque doit forcément transformer
des produits en sommes :

Théorème 14.5. Pour tous x, y ∈ R∗
+,

log(xy) = log(x) + log(y) .

Preuve: Par définition, t = log(xy) si et seulement si exp(t) = xy. Mais x = exp(log(x)) et y = exp(log(y)),
et donc

exp(t) = exp(log(x)) exp(log(y)) = exp
(
log(x) + log(y)

)
.

Ceci implique que log(xy) = t = log(x) + log(y).

D’autres propriétés qui découlent directement du fait que le logarithme est la réciproque de l’ex-
ponentielle : log(1) = 0,

log(x)

{
< 0 si 0 < x < 1

> 0 si x > 1 .
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14.1. exp et log

De plus, par le théorème sur la dérivée de la fonction réciproque, pour tout x > 0, en dérivant les
deux côtés de l’identité

exp(log(x)) = x ,

on obtient
exp′(log(x))(log(x))′ = 1 ,

qui donne

(log(x))′ =
1

exp′(log(x))
=

1

exp(log(x))
=

1

x
.

Notons encore que
lim
x→0+

log(x) = −∞ , lim
x→+∞

log(x) = +∞ .

14.1.2 Changements de base

On peut utiliser exp et log pour définir d’autres fonctions, dont les propriétés sont semblables
mais que l’on interprète comme exponentielles et logarithmes dans des bases différentes.

Soit a > 0, appelé base.

Définition 14.6. L’exponentielle de base a est la fonction

expa : R → R∗
+

x 7→ expa(x) := exp(x log(a)) .
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14.1. exp et log

On a bien sûr que

expa(x+ y) = exp((x+ y) log(a))

= exp(x log(a) + y log(a))

= exp(x log(a)) exp(y log(a))

= expa(x) expa(y) ,

et on utilise aussi la notation expa(x) ≡ ax.

On peut ensuite calculer

(expa(x))
′ =
(
exp(x log(a))

)′
= log(a) expa(x)︸ ︷︷ ︸

>0

,

et puisque le signe de log(a) change, on en déduit que expa(x) est strictement croissante si a > 1,
strictement décroissante si 0 < a < 1.

Remarquons que l’on peut maintenant considérer une exponentielle évaluée en un point x > 0,
mais dont la base est elle-même une fonction a(y) > 0 :

expa(y)(x) = a(y)x := exp(x log(a(y))) .

En particulier, on a la formule classique : pour tous x, y ∈ R,

(ay)x := exp(x log(ay)) = exp((xy) log(a)) = axy .

Aussi, si la base dépend de x et que l’exposant est une fonction de x, on doit admettre implicite-
ment la définition suivante :

Définition 14.7. Si f(x) > 0, alors

f(x)g(x) := exp
(
g(x) log(f(x))

)
.
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14.1. exp et log

14.1.3 Définition alternative de e

Dans cette section (lien vers la section m_suites_serie_geometrique), le nombre e = 2.718 . . .
a été défini par la limite

lim
n→∞

(
1 +

1

n

)n
.

On montre ici que ce nombre est aussi égal à exp(1) :

Théorème 14.8.

lim
n→∞

(
1 +

1

n

)n
=
∑
k⩾0

1

k!

Preuve: Définissons

en =

(
1 +

1

n

)n
, e′n = 1 +

n∑
k=1

1

k!
.

On veut montrer que
lim
n→∞

en = lim
N→∞

e′N .

Rappelons que la formule du binôme de Newton (lien vers la section m_recurrence) permet d’écrire

en = 1 +
n∑
k=1

1

k!

(
1− 1

n

)
· · ·
(
1− k−1

n

)
.

Puisque 1− j
n < 1 pour tout j = 1, 2, . . . , n− 1, on en déduit que

en < e′n ,

et donc que
lim
n→∞

en ⩽ lim
n→∞

e′n .

Ensuite, fixons un entier N , quelconque, et remarquons que pour tout n > N ,

en > 1 +

N∑
k=1

1

k!

(
1− 1

n

)
· · ·
(
1− k−1

n

)
.

En prenant n→ ∞, ceci donne

lim
n→∞

en ⩾ 1 +

N∑
k=1

1

k!
= e′N .

Comme cette dernière inégalité vaut pour tout N , on a aussi que

lim
n→∞

en ⩾ lim
N→∞

e′N .

14.1.4 Irrationnalité de e

Théorème 14.9. Le nombre e = exp(1) =
∑

k⩾0
1
k!

est irrationnel.

Preuve: Par l’absurde, supposons que e est rationnel, c’est-a-dire qu’il existe deux entiers p, q ∈ N∗ tels que

e =
p

q
.
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Définissons la suite (Mn)n⩾1 :

Mn = n!

(
e−

n∑
k=0

1

k!

)

Par définition, Mn > 0 pour tout n (puisque la suite an =
∑n

k=0
1
k! est strictement croissante et tend vers e).

Ensuite, notre hypothèse permet d’écrire

Mn = n!

(
p

q
−

n∑
k=0

1

k!

)
,

qui implique que lorsque n > q, Mn est un entier : Mn ∈ {1, 2, 3, 4, . . . }. Or on peut remarquer que

Mn = n!

(
p

q
−

n∑
k=0

1

k!

)

= n!

( ∞∑
k=0

1

k!
−

n∑
k=0

1

k!

)

= n!

∞∑
k=n+1

1

k!

=
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

⩽
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n+ 1
· 1

1− 1
n+1

=
1

n
.

On en déduit que Mn < 1 lorsque n > 1, une contradiction puisqu’on a dit plus haut que Mn ⩾ 1 est un
entier.

14.2 log et exp

Dans cette section, on construit la fonction logarithme, on étudie ses propriétés, et on l’utilise pour
en déduire la fonction exponentielle.

14.2.1 Aire sous la courbe y = 1
x

Pour commencer définissons, pour tous a, b > 0, le nombre

I(a, b) :=

∫ b

a

dt

t
.

Si a < b, I(a, b) le nombre s’interprète comme l’aire de la région délimitée par l’axe Ox, le graphe
de la fonction t 7→ 1

t
, et les deux droites verticales d’équations x = a et x = b : Si a > b, la

convention faite sur l’intégrale implique que

I(a, b) = −I(b, a) .
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Cette fonction de deux variables satisfait aux propriétés suivantes :

Proposition 21. ⋆ Relation de Chasles : pour tous réels strictement positifs a, b, c,

I(a, b) + I(b, c) = I(a, c) .

⋆ Pour tous 0 < a < b < c, et pour tout λ > 0,

I(λa, λb) = I(a, b) .

Preuve: La première propriété suit de
∫ b
a f(t)dt+

∫ c
b f(t)dt =

∫ c
a f(t)dt. Pour la deuxième, par le changement

de variable s := t/λ (qui donne dt = λds) dans l’intégrale définie,

I(λa, λb) =

∫ λb

λa

dt

t
=

∫ b

a

λdt

λs
=

∫ b

a

dt

s
= I(a, b) .

14.2.2 Définition du logarithme

Définition 14.10. Le logarithme est la fonction

log : R∗
+ → R

x 7→ log(x) := I(1, x) =

∫ x

1

dt

t
.
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On a en particulier :
log(1) = 0 .

La propriété remarquable de cette fonction est qu’elle transforme des produits en sommes :

Théorème 14.11. Pour tous x, y > 0,

log(xy) = log(x) + log(y) .

Preuve: Par la proposition, I(x, xy) = I(y), et donc, en utilisant la relation de Chasles,

log(xy) = I(1, xy)

= I(1, x) + I(x, xy)

= I(1, x) + I(1, y)

= log(x) + log(y) .

Par conséquent, pour tout x > 0,

0 = log(1) = log(x 1
x
) = log(x) + log( 1

x
) ,

qui donne
log( 1

x
) = − log(x) .

Théorème 14.12. Le logarithme est dérivable sur R∗
+, et

(log(x))′ =
1

x
.

En particulier, x 7→ log(x) est strictement croissante.

Preuve: Par le Théorème Fondamental de l’Analyse, étant défini comme l’intégrale d’une fonction continue,
log est dérivable et

(log(x))′ =
(∫ x

1

dt

t

)′
=

1

x
∀x ∈ R∗

+ .

Puisque le logarithme est dérivable, il est continu sur R∗
+.

Lemme 33.
lim

x→+∞
log(x) = +∞ , lim

x→0+
log(x) = −∞ .

Preuve: Puisque c’est une fonction strictement croissante, il suffit de montrer que

lim
n→∞

log(n) = lim
n→∞

I(1, n) = +∞ .

En comparant l’aire sous la courbe avec les rectangles de bases [k, k + 1] sous la courbe, k = 1, . . . , n− 1,

I(1, n) ⩾
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

On reconnaît dans cette somme la somme partielle de la série harmonique, qui tend vers l’infini lorsque
n→ ∞.
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L’autre limite est une conséquence de la première, puisque par le changement de variable x = 1
y ,

lim
x→0+

log(x) = lim
y→+∞

log( 1y )

= − lim
y→+∞

log(y)

= −∞ .

Puisque log est continue, les deux limites ci-dessus impliquent que Im(log) = R. Puisqu’elle est
strictement croissante, elle est aussi injective. On a donc montré que log est une bijection.

Définition 14.13. La réciproque de log : R∗
+ → R est la fonction exponentielle,

exp : R 7→ R∗
+

x 7→ exp(x) ,

Par définition,

log(exp(x)) = x ∀x ∈ R ,
exp(log(y)) = y ∀y ∈ R∗

+ .

On a la propriété fondamentale :

exp(x+ y) = exp
(
log(exp(x)) + log(exp(y))

)
= exp

(
log(exp(x) exp(y))

)
= exp(x) exp(y)) .

De plus, en dérivant la relation
x = log(exp(x)) ,

par rapport à x,

1 = log′(exp(x)) =
1

exp(x)
(exp(x))′ ,

qui entraîne
exp(x)′ = exp(x) .

14.2.3 Changements de base

(On peut procéder comme dans la section précédente.)

14.3 Fonctions hyperboliques

On définit ici les fonctions trigonométriques hyperboliques. Même si ces fonctions seront définies uni-
quement à partir de l’exponentielle, leurs propriétés rappelleront clairement celles des fonctions
trigonométriques de base. En fin de section, on fera quelques commentaires sur l’origine du terme
“hyperbolique”.
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14.3. Fonctions hyperboliques

Définition 14.14. Soit x ∈ R.

⋆ Le sinus hyperbolique de x est défini par

sinh(x) :=
ex − e−x

2
.

⋆ Le cosinus hyperbolique de x est défini par

cosh(x) :=
ex + e−x

2
.

⋆ La tangente hyperbolique de x est définie par

tanh(x) :=
ex − e−x

ex + e−x
.

Remarquons que

⋆ cosh(x) est paire, que cosh(x) ⩾ 1 pour tout x ∈ R .

⋆ sinh(x) et tanh(x) sont impaires, et positives si x > 0, négatives si x < 0.

⋆ On a vu ici (lien vers la section m_fonctions_paires_impaires) que toute fonction
peut se décomposer en une somme d’une fonction paire et d’une fonction impaire. En ap-
pliquant ce résultat à la fonction f(x) = ex, on obtient précisément

ex = cosh(x) + sinh(x) .

On peut voir la tangente hyperbolique comme étant définie par

tanh(x) =
sinh(x)

cosh(x)
.

Un simple calcul mène à
cosh(x)2 − sinh(x)2 = 1 ,

qui entraîne

1− tanh2(x) =
1

cosh2(x)
.

14.3.1 Dérivées

Puisque ex est dérivable, les fonctions hyperboliques sont dérivables (et continues) sur R. De plus,

(sinh(x))′ = cosh(x)

(cosh(x))′ = sinh(x)

(tanh(x))′ = 1− tanh2(x) =
1

cosh2(x)

Par conséquent, sinh(x) est strictement croissante,
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14.3. Fonctions hyperboliques

cosh(x) est décroissante sur ]−∞, 0], croissante sur [0,+∞[,

et tanh(x) est strictement croissante :

14.3.2 Propriétés

Théorème 14.15. Pour tous x, y ∈ R,

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y)

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)

Preuve: (exercice)

En prenant y = x, on a les formules

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = 2 cosh2(x)− 1 = 1 + 2 sinh2(x)

tanh(2x) =
2 tanh(x)

1 + tanh2(x)
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14.3. Fonctions hyperboliques

14.3.3 Réciproques

Comme sinh : R → R est strictement croissante, continue, et puisque

lim
x→−∞

sinh(x) = −∞ , lim
x→+∞

sinh(x) = +∞ ,

on en déduit qu’elle est bijective.

Sa réciproque se note

argsinh : R → R
x 7→ argsinh(x)

À l’aide de la formule pour la dérivée d’une fonction réciproque,

argsinh′(x) =
1

cosh(argsinh(x))

=
1

sinh′(argsinh(x))

=
1√

1 + sinh2(argsinh(x))

=
1√

x2 + 1
.

On peut en fait exprimer cette réciproque explicitement :

Lemme 34. Pour tout x ∈ R,
argsinh(x) = log(x+

√
1 + x2) .

Preuve: Puisque sinh est impaire, il suffit de fixer y ⩾ 0, et de chercher l’unique x tel que sinh(x) = y. En
posant t = ex, cette condition devient

ex − e−x

2
=
t− 1/t

2
= y ,

qui est équivalente à
t2 − 2yt− 1 = 0 .

Puisque le discriminant de cette équation est ∆ = 4(y2 + 1) > 0, elle possède une unique solution t ⩾ 1,
donnée par

t =
2y +

√
∆

2
= y +

√
1 + y2 .

On obtient x = log(t) = log(y +
√

1 + y2) ⩾ 0.

Ensuite, puisque cosh est paire, on doit restreindre son domaine si on veut la rendre injective.
Comme elle est strictement croissante sur R+, cosh : R+ → R est injective. De plus, comme
cosh(0) = 1 et

lim
x→+∞

cosh(x) = +∞ ,

on conclut que cosh : R+ → [1,+∞] est bijective.

Sa réciproque se note

argcosh : [1,+∞[ → R+

x 7→ argcosh(x)
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14.3. Fonctions hyperboliques

On a donc, pour tout x > 1,

argcosh′(x) =
1

sinh(argcosh(x))

=
1√

cosh(argcosh(x))2 − 1

=
1√

x2 − 1
.

On peut aussi exprimer explicitement la réciproque : pour tout x ∈ [1,+∞[,

argcosh(x) = log(x+
√
x2 − 1) .

Finalement, tanh étant strictement croissante, continue, et puisque

lim
x→−∞

tanh(x) = −1 , lim
x→+∞

tanh(x) = +1 ,

on en conclut que tanh : R →]− 1, 1[ est bijective.

Sa réciproque se note

argtanh :]− 1, 1[ → R
x 7→ argtanh(x) ,

avec
argtanh(x) =

1

2
log
(1 + x

1− x

)
.

14.3.4 Origine du terme “hyperbolique”

(en construction)
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