Chapitre 9

Dérivée et calcul différentiel

9.1 Définition de la dérivée, exemples

(ici, Video: v_derivee_introduction.mp4)

Une question géométrique naturelle, et trés utile pour 1'étude d’une fonction, est de savoir com-
ment calculer I’équation de la droite tangente au graphe d"une fonction, en un point (zo, f(zo)) :

[ L]
Lo £

k drag me!

Pour connaitre 1’équation de cette droite, de la forme

y=mx+h,
on commence par chercher sa pente m. Et quand on cherche la pente d"une droite, on a besoin de
deux points sur cette droite et ici, on n’en a qu’un, a savoir le point (xo, f(xo)).

L’idée est de passer par un processus de limite. En effet, introduisons un deuxiéme point sur le
graphe, (z, f(x)), ol x est un point différent de x, et considérons la sécante passant par les points
(w0, f(xo)) et (z, f(x)). La pente de cette sécante est donnée par

f@) = f(zo)

Lorsque z est proche de z, cette pente approxime celle de la droite que I’on cherche, m. Dans la
limite x — x (tester sur I’animation ci-dessus), elle devrait méme tendre exactement vers m :

Lo f@) = fla)

T—rT( Xr — 'CEO

L’existence de la limite ci-dessus n’est pas garantie en générale.
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9.1. Définition de la dérivée, exemples

Définition 9.1. Soit f définie en z, € R et dans son voisinage. On dit que f est dérivable en z si
le nombre f’'(z() défini par la limite

Floy) — tim 1) = F(z)

T—T0 T — X

existe (et est fini). On appelle f'(z() la dérivée (ou nombre dérivé) de f au point z.

Remarque 9.2. Dans la limite qui définit f’'(zy), ci-dessus, la variable = est utilisée uniquement
pour calculer la limite; on dit qu’elle est muette. On donc peut écrire f'(z() de différentes ma-
nieres :

an) = i HO=T100)
— lim f(2) = f(zo)

Z—X0 z — :EO

~ lim f(zo+h) — f(xo)

h—0 h ’

ot dans la derniére égalité, on a fait le changement de variable h := z — . o
Exemple 9.3. Soit f(z) = 2?. Calculons sa dérivée au point xg = 1:

/ _ _ .
F () :lvlinl z—1 _ilg% rz—1
D@+
] T—1
= lim(z + 1)
r—1

Donc la tangente a la parabole au point d’abscisse z; = 1 a une pente de 2 (voir 'animation ci-
dessous). Son équation est donc de la forme y = 2z + b, et comme elle doit passer par le point
(1, f(1)) = (1,1), on trouve b = —1. Donc la tangente au point (1, 1) a pour équationy =2z —1. ©

Voir la sécante

f(za) /
s, 3
Exemple 9.4. Soit f(z) = . Au point 7y = —2,
1_ 1
z——-2 I — (—2) z—=-2 1+ 2 4
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9.1. Définition de la dérivée, exemples

| [Voir la sécante

9.1.1 Origines possibles de la non-dérivabilité en un point

Voyons quelques exemples de fonctions qui ne sont pas dérivables.
Exemple 9.5. Considérons

f) = {xsin(;) siz #0,

0 siz=0.
Au point zy = 0, le rapport donnant la pente de la droite de la sécante est
f(l’) — f(O) _ sin(l) ’
x—0 v

qui comme on le sait ne possede pas de limite lorsque x — 0. Donc f n’est pas dérivable en 0 :

&

Exemple 9.6. Considérons f(x) = |z|. Au point z; = 0, la dérivée s’obtient en prenant la limite
r — 0 du rapport

z—0 x +1 siz>0.

f(x) — f(0) _@_{—1 siz <0,

Or ce signe n’a pas de limite quand z — 0, donc f n’est pas dérivable en z, = 0. Cela fait sens
du point de vue géométrique, puisqu’en ce point son graphe ne possede pas de droite tangente
naturellement définie :
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9.1. Définition de la dérivée, exemples

4 x|

o
Exemple 9.7. Considérons f(z) = ¢/z. Au point zy = 0, la dérivée s’obtient en prenant la limite

r — 0 du rapport
flo) = f0) _ V= _ 1

—
z—0 T T2

Or cette limite est 400, donc f n’est pas dérivable en z, = 0. Cela fait sens du point de vue
géométrique, puisqu’en ce point son graphe posséde une droite tangente, mais verticale (de pente
infinie) :

‘.

x3

v

F\ P«h ',“+®“

9.1.2 Taux d’accroissement et la notation de Leibniz

De par sa signification géométrique, la dérivée est toujours une limite d'un quotient de deux
quantités qui tendent vers zéro. (C’est pour ¢a que les indéterminations “2” sont si importantes !)

o)t F@ = T0)

e—z0 T — X

Interprétons cette limite en introduisant des nouvelles notations :
* Af = f(x) — f(xo) représente I'incrément de la fonction.
* Az := x — x( représente 'incrément de la variable.

D’un point de vue quantitatif, ces deux incréments sont petits lorsque x est proche de z,; A f dit
exactement de combien f varie lorsque z s’écarte de zy d"une distance Az :
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9.1. Définition de la dérivée, exemples

Ensuite, I’existence de la dérivée,

f/(l'o) = lim ﬁ

T—rx0 Al‘ ’

signifie que quand l'incrément Az est petit, alors A f est essentiellement proportionnel a Az, la
constante de proportionnalité étant f/(x) :

Af =~ f'(zg)Ax

On conclut que la dérivée f'(x) représente le taux d’accroissement local de f en z, : si on varie la
variable de zy a xy + Az, alors la valeur de la fonction passe de f(x) a f(zo) + Af, ot Af est
essentiellement proportionnel a Az, comme dans la relation ci-dessus.

Informel 9.8. Si on admet pendant un instant qu’il est possible de considérer des incréments
infiniment petits, de la fonction et de la variable, que I’on notera respectivement df et dz, alors la
dérivabilité de f en z, signifie que ces deux infiniment petits sont proportionnels, la constante de
proportionalité étant précisément la dérivée en x :

df = f'(xo)dz .
La notation suivante, appelée notation de Leibniz, est donc naturelle :

(z0) = 2 (a0)

9.1.3 Dérivabilité implique continuité

Onl’a dit, pour que f soit dérivable en z, il faut que sa droite tangente soit bien définie; elle doit
étre assez lisse en x. En particulier, son graphe ne peut pas faire de saut en z :

Lemme 23. Si f est dérivable en x alors elle est continue en x.

Preuve: Si f est dérivable en x, alors en multipliant et divisant par = — zo,

tin ((x) ~ fao) = lim [[E 0] )
10 r—x0 0 ————
—/(e0) o
= f'(20) -0
=0.
Donc lim, 4, f(x) = f(x0), et donc f est continue en z. O

Remarque 9.9. Attention, la réciproque de l'affirmation du lemme n’est pas vraie. C’est-a-dire
que “continuité” n'implique pas “dérivabilité”. Par exemple, on a vu que f(z) = |z| n’est pas
dérivable en z( = 0, pourtant elle est bien continue en ce point. o

On a vu plus haut des fonctions (|z|, ¥/z) qui étaient continues partout mais pas dérivables en un
point. On pourrait, en adaptant ces exemples, construire des fonctions qui sont continues partout
mais pas dérivables en un nombre arbitraire fini de points. Il est naturel de se poser la question
de savoir s’il existe des fonctions qui sont continues partout mais dérivables nulle part. De telles
fonctions existent...

Exemple 9.10. Considérons
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9.2. Dérivée et approximation linéaire

Puisque

cette fonction est bien définie pour tout z € R; elle est paire. Avec un peu plus de travail, on peut
montrer qu’elle est aussi continue sur R. Et avec encore un peu plus de travail, on peut montrer
qu’elle n’est dérivable en aucun point de R. o

9.2 Dérivée et approximation linéaire

Répétons l'intérét géométrique de la dérivabilité : lorsque f est dérivable au point z(, le nombre
D = f'(x,) représente la pente de la droite tangente au graphe de f au point (zo, f(z¢)). Mais
la dérivabilité représente aussi un intérét analytique, puisqu’elle fournit une fagon particuliere de
représenter la fonction au voisinage de x.

Commencgons par illustrer ce fait sur un exemple simple :

Exemple 9.11. Considérons f(z) = z? au voisinage de 2o = 1. On a déja vu dans la section précé-
dente que f était dérivable en zy = 1, puisque

x? —1?
/ — —
f1) = lim -1
Si on définit, pour tout x # 1,
1},2 _ 12
= -2
7"1($) T -1 J

alors

i;r%rl(x) =0.
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9.2. Dérivée et approximation linéaire

On peut de plus écrire

ZL‘2—12
=17 -1

+ x—l(x )

r? — 12

— 12 (2 —2) 1

b (B2 )
=12+ (2+r(x)(z-1)
=12 + 2 (=1 +r(z)(x-1)
= @

En d’autres termes, on peut écrire
f@) = f(1) + (f'(1) + () (@ = 1)
=)+ M@ =1) +r()(z-1)

La fonction = — f(1) + f'(1)(z — 1) n’est autre que 1’équation de la droite tangente au graphe de
2% en g = 1; elle approxime les valeurs de f(z) lorsque z est proche de x :

Xo

flo) =~ f(1) + f(1)(x—1)
Puis, le terme “+r;(z)(z — 1)” est la correction qui donne 1’écart entre la vraie fonction et son
approximation. o

Ce que nous venons d’apprendre dans le cas f(x) = 2? est vrai plus généralement :

Théoréme 9.12. Soit f une fonction définie en x, et dans son voisinage. Alors : f est dérivable en x, et
sa dérivée en ce point vaut f'(xy) = D si et seulement si il existe une fonction r,,(x) définie dans un
voisinage épointé de x telle que lim,_,,, r,,(x) = 0, et telle que f peut étre représentée, dans ce voisinage,
comme suit :

f(x) = f(zo) + (D + 1 (2))(z = o) -

Preuve: Si f est dérivable en z et f'(z9) = D, alors

o T@) = fo)

T—T0 Tr — X0

que l'on peut écrire

lim {M _ D} —0.
T—T0 xTr — ,’L‘O
Donc si on définit la fonction
oy T@ =S

T — X
alors par ce qui est écrit au-dessus, cette derniere satisfait lim,_,,, 75, (x) = 0. De plus, en isolant f(z) dans
la définition de r,,, on voit que

f(x) = f(zo) + (D + a0 (2))(x = o) -
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9.2. Dérivée et approximation linéaire

Inversément, si cette relation est satisfaite pour une fonction r,, satisfaisant lim,_,,, 75, (z) = 0, alors

f(x) = f(=0)

T — T = D ra(@),

et la limite de ce quotient existe puisque

lim @) = f(zo) =D+ lim ry (z) =D,
T—rT0 Tr — X0 T—rT0
ce qui implique que f est dérivable en z( et que f'(zo) = D. O

Une fonction dérivable en 2y peut donc s’écrire
op

f(@) = f(xo) + (f'(z0) + 72y (%)) (= — 20)
= f(x0) + f'(zo) (% — o) + rue () (2 — 20)

ol limy 4, 74, () = 0.

Cette représentation est utile si on considére x proche de z,, car dans ce cas le terme 7, (z)(x —
7o) est petit, et si on le néglige, on obtient une approximation de f au voisinage de z, appelée
I’approximation linéaire :

f(@) > f(wo) + ' (x0)(z — mo)
Cette approximation est celle qui consiste simplement a approximer le graphe de f, proche de z,
par celui de sa droite tangente au point (zo, f(zo)) :

9.2.1 Sur les deux premiers niveaux de régularité d’une fonction

On a pour l'instant deux notions de régularité pour une fonction f au voisinage d'un point .
Décrivons ce qu’elle représente en qualité d’approximation.

* La continuité : Si f est continue en x, alors les valeurs de f(z) sont proches de f(x() lorsque
x est proche de z(, qui est une approximation d’ordre zéro de f au voisinage de z :

f@) =~ f (o)

* La dérivabilité : Si f est dérivable en z, alors elle peut étre représentée comme ci-dessus, et
si on néglige r,,(x), on obtient 'approximation linéaire, appelée aussi approximation du
premier ordre, de f au voisinage de z :

f(@) = f (o) + ['(wo) (z — o)

L’approximation a 1’ordre zéro revient a approximer f(z) par la constante f(z), mais 'approxi-
mation linéaire est plus précise, puisqu’elle tient compte de comment f varie au voisinage de z!

Comparons ces approximations sur un exemple simple :
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9.3. Regles de dérivation

Exemple 9.13. Supposons que 'on veuille calculer 1.998*.

Ecrivons 1.998* = f(1.998), o1 f(z) = x*. Ce que l'on aimerait faire est donc d’estimer la valeur
de f en un point x = 1.998 qui est proche de z, = 2.

% A l'ordre zéro,
1.998* = £(1.998) ~ f(2) =2 = 16.

* Au premier ordre,

1.998* = £(1.998) ~ f(2) + f'(2)(1.998 — 2)
=2 1+4.2%1.998 - 2)
= 15.936

Sachant que la vraie valeur est 1.998* = 15.9360959..., 'approximation a 1’ordre zéro représente
donc une erreur d’environ 0.4%, alors que celle du premier ordre, moins de 0.001%! o

Nous verrons plus tard comment aller au-dela de ’approximation linéaire, lorsque nous calcule-
rons des développements limités.

9.3 Regles de dérivation
(ici, Video: v_derivee_regles.mp4)

Pour l'instant, la dérivée associe a une fonction f et un point z, le nombre f'(x). Si on sait calculer
la dérivée en chaque point =, du domaine de f, la dérivée devient une nouvelle fonction,

Ty f,(I[)) ,

et comme on aimerait plutot voir x, comme un variable, on écrira plutdt

On dira que f, définie sur un ouvert, est dérivable si elle est dérivable en tout point z, de son
ensemble de définition, et donc si sa dérivée f’ est définie en tout point de cet ouvert.

Exemple 9.14. La fonction f(x) := z* est dérivable sur R, et sa dérivée est donnée par f'(z) = 2z.
En effet, pour un z, € R fixé,

/ 1 (IO + h)2 — x%
o) =im =
(@} 4 2x0h + B?) — o
= h

:2370.
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9.3. Regles de dérivation

Voir la sécante

f(z0) /

9.3.1 Sommes et produits

Pour commencer, montrons que si deux fonctions sont dérivables en un point, alors leur somme
et leur produit le sont aussi, et donnons les expressions des dérivées de ces fonctions :

Proposition 10. Soient f, g dérivables en un point . Alors la somme et le produit de f et g sont dérivables
en x, et

1) (f +9)(w0) = f'(w0) + g'(20)
2) (f-9)'(zo) = f'(z0)g(z0) + f(20)g'(20)

La deuxieme propriété implique en particulier que pour toute constante C,

(Cf(x)) =Cf'(x).

En effet, la dérivée d’une fonction constante est nulle : ¢’ = 0.
Preuve: En écrivant la définition de la dérivée de f + g en z( et en réarrangeant un peu les termes,

(f +9)(x) — (f +9)(x0)

(f +9)' (o) = lim

T—IQ T — X0
o F@) + g(@) = f(a) — g(ao)
T—T0 xr — xo
_ i @) = (@) | g(2) — g(x0)
7I1~>Io{ x—g;o + «T—JIO }

= f'(wo0) + ¢'(20) -
Cette derniere montre que f + g est dérivable en z, et que sa dérivée en ce point vaut f’(zo) + ¢'(zo). Par

définition, la dérivée de f - g en x est

(F - g (x0) = tim L 9@ = (f - 9)(wo)

T—rT0 xr — 330
_ iy J@)9(@) — f(z0)g(20)
T—T0 X — X

En insérant + f(z()g(z) au numérateur, et en réarrangeant 1’expression obtenue,

f(x)g(z) — f(x0)g(0)
T — X
_ f(@)g(@) = fzo)g(z) + f(mo)g(z) — f(20)g(wo)
r — X0
T — o ~~ T — Zo

%/_/ xT
Sy o) —g/(z0)
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Dans cette derniére ligne, on a utilisé le fait que f et g sont toutes deux dérivables en xy. On a également
utilisé le fait suivant : puisque g est dérivable en x, elle est continue en ce point, et donc lim,_,,, g(z) =
9(o)- O

9.3.2 Composées et quotients

Rappelons que la composée de deux fonctions f et g, lorsqu’elle est bien définie, est donnée par

(fog)(x) = flg(x)).

Proposition 11. Soit g dérivable au point x, et f dérivable au point a = g(x). Alors f o g est dérivable
au point x, et

(f 0 9)'(z0) = f'(9(20))g' (o)

Preuve: Etudions
(f(g(zo +h)) — f(g(x0))
) .

* Puisque g est dérivable en z, il existe une fonction r,, telle que

(f 0 9) (z0) = lim

g(zo + h) = g(xo) + (9'(z0) + 720 ()P .
hna e

Remarquons que H — 0 lorsque h — 0.

* Puis, comme f est dérivable en g, il existe une fonction 7, (H ) telle que
fla+H) = f(a) + (f'(a) +7a(H))H .
On a donc

flg(zo+h)) = fla+ H) = f(a) + (f'(a) + 7a(H))H
= f(g(z0)) + f'(g(w0)) H + 7a(H)H ,

ce qui permet d’écrire

Mais lorsque h — 0, 7o (H) — 0 et ry,(h) — 0, et donc

}ILIL% (f(g(wo + hzl) — f(g(w0)) _ f'(g(xo))g/(ﬂﬁo),

ce qu’on voulait démontrer. O

Comme conséquence, on peut maintenant dériver d’autres types de fonctions, comme des quo-
tients :

Proposition 12. Soient f, g dérivables en x. Si g(xo) # 0, alors % est dérivable en x, et

(i>/(xo) _ f'(@o)g(wo) — f(20)g' (w0) .

g g(wo)?
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9.4. Dérivées des fonctions élémentaires

Preuve: On commence par utiliser la régle de dérivation d"une composée pour dériver 'inverse de g en z :

(o=t

On voit ensuite le quotient comme un produit, on dérive ce produit, et on met tout le monde au méme
dénominateur :

+ @) (5) @)

/

— (x o -9 (.%'0)
= 7o) s+ F0) ()
_ J'(z0)g(x0) — f(x0)g' (o)

9(x0)? '

On verra comment obtenir une formule pour (f(x)?®)’ dans la section suivante.

9.4 Dérivées des fonctions élémentaires

(ici, Video: v_derivee_fondamentales.mp4)

Les régles de dérivation vues dans la section précédente permettent de calculer, en principe, la
dérivée de n'importe quelle fonction, tant que celle-ci est obtenue par combinaisons (sommes ou
différences, produits ou quotients, composées) d’autres fonctions plus simples que 1’on sait déja
dériver. Il est donc important de connaitre les dérivées des fonctions élémentaires.

Ci-dessous, (...)" indique la dérivation par rapport a la variable x.

Pour toutn € N,

({En)/ — nfbn_l

Preuve: On démontre la formule par récurrence sur n. La formule est valide pour n = 1 et n = 2 (voir plus
haut). Si on suppose la formule valide pour n, alors par la regle de dérivation d"un produit,

(xn—i-l)/ — (l’l’n), -1 -$n+$'nﬂ?n_1 — (n+1)xn

(sinz)" = cosx.

Preuve: Montrons que
lim sin(zg + h) — sin(xp)
h—0 h

= cos(xp) .
En utilisant la formule de trigonométrie pour le sinus d"une somme,

sin(a + 3) = sin(a) cos(5) + cos(a) sin(f) ,
on peut écrire

sin(zo + h) —sin(xg) (sin(zo) cos(h) + cos(zo) sin(h)) — sin(z)

h
= sin(xg) COS(};) -1 + sin(h) cos(zp)
—_— >
—0 —1
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9.4. Dérivées des fonctions élémentaires

Dans la derniere ligne, on a fait

. cos(h)—1 . cos(h)—1 1
i = i =0 (=3) =0
Ul
(cosz) = —sinz.
Preuve: On utilise le fait que cos(z) = sin(§ — ), et la formule pour la dérivée d'une composée :
(cos(z))’ = (sin(5 — x))’
=cos(§ —x)- (5 —x)
= sin(x) - (—1)
O
(tanz) = 1 +tan’z = !
cos(z)?”
Preuve: Par la formule pour la dérivée d’un quotient,
sin(z)\’ cos(z)? + sin(z)?
t = =
(tan(z)) (cos(:c)) cos(z)?
O

1
(logz) ==, x>0.
T

Preuwve: On calcule, pour tout z > 0,

oy 08( + h) —log(z)

(log(w))" = lim N

L loa(e(1 4 1)) — log(x)
h—0 h
(log(z) + log(1 + %)) —log(x)

Dans l’avant-derniere ligne, on a posé t = %, et utilisé le fait que si h — 0, alors t — 0. On a ensuite utilisé

. 1 14t 4 e, e e . . . . .
limy_sg % = 1, que nous avons étudiée ici (lien vers la section m_fonctions_limite_quelques_

limites). O

() =e".
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9.4. Dérivées des fonctions élémentaires

Preuve:
, z+h e
x
=1
(¢) B30 h
exeh — et
=1
B0 h
h
e —1
= e <
‘ {hlg(l) h }
= ex
Voir les commentaires sur blackpenredpen (lien web). O

(a®) = log(a)a®|.

Preuve: En exponentiant, a = elog(a)

= log(a)a®
OJ
(log,())' = ——
T =
&a xlog(a)
Preuve: Par la formule du changement de base pour le logarithme,
log(x)\’ 1 1 1
1 = = 1 F= S
(log, () <1og(a)> log(a)( og(%)) log(a) =
O
Pour tout o € R,
() =az*', >0
Preuve: En exponentiant, = = elos@) (1 > 0),
(xa)/ — (ealog(x))/ — ealog(z)(a IOg(.’L'))/ — $o¢g = ar® !
T
O

Pour finir, étudions la dérivation des fonctions du type “f(x)®)”. Pour commencer, il faut noter
que de telles fonctions sont bien définies uniquement lorsque f(x) > 0. Dans ce cas, puisque
f(x) > 0, son logarithme est bien défini et on peut I’exponentier

() = eosU@)
Ce qui motive la définition suivante :
F()9® 1= 9@ os(F @)
Si on veut dériver une telle fonction, on devra donc s’assurer que f(z) > 0 dans le voisinage du

point considéré. On pourra alors appliquer les regles de dérivation démontrées plus haut, ainsi
que les dérivées de I'exponentielle et du logarithme, pour calculer :

(e9@1oeF(@)) — 9@ 18(f(@) (4(2) log(f(z)))’

! g(x) / g(x) log(f(x
= (/) 10a(F @) + 5 (@) e oD
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Exemple 9.15. Considérons, pour = > 0, la fonction
h(z) = z* .

Remarquons que i(x) n’est ni de la forme 2%, ni de la forme a”, mais bien du type f (x)9®), on doit
donc la considérer comme définie a 1’aide d"une exponentiation :

h(zx) = e®loe(®)
On la dérive alors sur R} en utilisant les régles de dérivation :
h,<l’> _ (emlog(m))/ _ ewlogx(x IOgZE),

(1og(a) + rL)e s
(log(x) + 1)z”.

9.5 Dérivée d'une fonction réciproque

Théoreme 9.16. Soit I = |a, b[ un intervalle ouvert, et f : I — F une fonction bijective (en particulier,
F = Tm(f)), dont la réciproque est notée f~' : F — I. Soit encore xy € I. Si f est dérivable en xy et si
f'(xo) # 0, alors f~1 est dérivable en yy = f(xo), et

1 1

U=V 0) = 5 = 7o)

Avant de donner la preuve, donnons une explication graphique de la formule énoncée dans le

théoreme : .
(f7) (vo) = )

Pour commencer, rappelons que le graphe de la fonction réciproque f~! du graphe de [ a tra-

vers la diagonale (pour ce rappel, voir ici (lien vers la section m_fonctions_generalites_
fonctions_reelles)):

Or la réflexion d'une droite de pente m # 0 a travers la diagonale est une droite de pente -. On
s’attend donc a ce que la dérivée de f~! au point (yo, o) soit égale a I'inverse de la dérivée de f
au point (zg, o) :

Preuve: Pour étudier la dérivée de la réciproque f~! au point yo = f(x), on considere le quotient est

S y) = (o)
Y — Yo '
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9.5. Dérivée d"une fonction réciproque

Comme f est bijective, on peut associer a tout y proche de y, son unique préimage, z = f~!(y). Clairement,
y — yo implique = — xy. On peut donc récrire la limite

fy) = o) _ 1 1

_ o Y=y = f@)—f(zo) *
y—bo urE R :Z_zf) o)

Puisque f'(zo) # 0, le dénominateur de cette derniére fraction est non nul deés que z est suffisamment
proche de x, c’est-a-dire lorsque y est suffisamment proche de yo.

Maintenant, en prenant la limite,

) = o) 1
T T = i)
L
1
f'(zo)

O

Informel 9.17. Pour se souvenir de la formule, on peut partir de la relation qui définit la fonction
réciproque
fF W)=y VyerF.

Puis, en supposant que la réciproque est dérivable, dériver par rapport a y des deux cotés. Du coté
gauche, on dérive une composée, donc

FUTU ) =1.

On retrouve donc bien |

W) = s -
W= )

Exemple 9.18. Supposons qu’on connait (¢*)’ = e” mais qu’on ne sait plus dériver log(x). Comme
elles sont réciproques I'une de l'autre, que f(z) = e” est dérivable partout et que sa dérivée n’est

jamais nulle, on a
lo
elos(y) — Y,

que l'on dérive par rapport a y,
W log(y))' = 1
=Yy
On retrouve alors :

.
(log(y))" = -

Dérivons maintenant les réciproques des fonctions trigonométriques.

Exemple 9.19. Rappelons que la réciproque du sinus est

arcsin : [~1,1] = [-7, 7]

x +— arcsin(z)

Par définition,
y = sin(arcsin(y)) Vy € [—1,1]
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Puisque la dérivée du sinus ne s’annule nulle part sur | — 7, 7|, le théoréme garantit que arcsin
est dérivable sur | — 1, 1[. En prenant la dérivée par rapport a y des deux cotés de cette derniere

identité :siy €] — 1, 1],
1= (sin(arcsin(y))), = cos(arcsin(y))(arcsin(y))" .

Comme l'angle arcsin(y) €] — 7, 5[, son cosinus est positif, et donc

cos(arcsin(y)) = /1 — sin(arcsin(y))2 = /1 — y2.

On a donc

(arcsin(y)) = —— Vy €] — 1, 1]

| e

+1

LR

Exemple 9.20. Rappelons que la réciproque du cosinus est

arccos : [—1,1] — [0, 7]

x +— arccos(z)

Par définition,
= cos(arccos(y)) Vy € [-1,1]

Puisque la dérivée du cosinus ne s’annule nulle part sur |0, 7|, le théoreme garantit que arccos est
dérivable sur | — 1, 1. On calcule sa dérivée en prenant la dérivée par rapport a y des deux cotés
de cette derniere identité : siy €] — 1, 1],

1= (cos(arccos(y)))/ = — sin(arccos(y))(arccos(y))" .

Comme l'angle arccos(y) €]0, 7|, son sinus est positif, et donc

sin(arccos(y)) = v/1 — cos(arccos(y))? = /1 — y2.

On a donc

(arccos(y)) = i Vy €] —1,1]

N
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9.6. Dérivées latérales

v

850

Exemple 9.21. Rappelons que la réciproque de la tangente est

arctan : R =] — 7, 7|

x +— arctan(z)
Par définition,
y = tan(arctan(y)) VyeR

Comme la dérivée de la tangente ne s’annulle nulle part sur | — 7, 7|, arctan est dérivable partout

sur R. En dérivant rapport a y des deux cotés de cette derniere identité,

1= (tan(arctan(y)))/
= (1 4+ tan?(arctan(y)))(arctan(y))’
= (1 + y*)(arctan(y))".

On a donc

1
(arctan(y)) = Yy e R.

9.6 Deérivées latérales

Pour parler de la dérivabilité d’une fonction en un point z, il faut que cette fonction soit définie

dans un voisinage épointé de z,. Ceci signifie en particulier que f doit étre définie des deux cotés
de Xo.

Si f n’est définie que d'un c6té de z(, on peut tout de méme introduire une notion de dérivée
latérale -
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Définition 9.22. Soit z; € R.
* Soit f définie en z( et dans un voisinage a gauche. On dit que f est dérivable a gauche en
xo sile nombre f’ (x) défini par la limite

£ (20) = lim L&) =S (@)

T—=T( T — o

existe (et est fini). On appelle f’ (x() la dérivée a gauche en x.

* Soit f définie en z, et dans un voisinage a droite. On dit que f est dérivable a droite en z
si le nombre f} (zy) défini par la limite

fi(zo) = lim M

m—mé{ T — T

existe (et est fini). On appelle f’ (z() la dérivée a droite en .

Observons que la dérivabilité a gauche (resp. a droite) en z, implique qu’il existe une droite
tangente a gauche (resp. a droite) au point (x¢, f(xo)).

Il peut donc exister des fonctions qui peuvent étre dérivables a gauche ou a droite en un point,
mais sans étre dérivable en ce point.

Exemple 9.23. On sait que f(z) = |z| n’est pas dérivableen 2y = 0:

L’existence et I'égalité des dérivées latérales en un point entraine la dérivabilité en ce point :

Théoréme 9.24. f est dérivable en x si et seulement si f' (x) et f' (xo) existent et sont égales (et dans

ce cas, f'(z0) = f' (w0) = f1(zo).
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Preuve: Par définition,

/ T f(l’) — f(mo)
f_ (xO) B xl_lgla x—ixo )
fi(zo) = xl—lgl(; W .

Donc ces deux limites existent et sont égales si et seulement si
z) — f(x
L 1) = f(o)
T—T0 T — X0

existe et prend la méme valeur. O

Informel 9.25. Donc si les dérivées latérales existent et sont égales, la fonction est dérivable (image
de gauche ci-dessous), et si les dérivées latérales existent toutes les deux mais que leurs valeurs
sont différentes, alors la fonction n’est pas dérivable, et son graphe fait un “coude” au point z,
(image de droite ci-dessous) :

-?..(x.s i
§1x

B x,

9.6.1 Fonctions définies par morceaux

Soient f, g deux fonctions définies sur toute la droite, et z, € R. Considérons la fonction f sui-
vante, définie par morceaux :
x sir<x
flw) = {9< ) slw<a,

h(z) six>x,.

Si f est continue en z,, on pourra tester la dérivabilité de f en z., par le théoréeme précédent, en
calculant les dérivées latérales de f en x., et en vérifiant qu’elle sont égales.

Exemple 9.26. Etudions la dérivabilité de

g(z) =3 — 2? siz <1,
flx) = 3 e :
=x°—3x°+4 siz>1

au point z, = 1. Remarquons que f est continue en ce point puisque

lim f(z) = lim g(z) =2= lim h(z) = lim f(z),

r—1- r—1- z—1+t xz—1t
qui est également égale a f(1) = 2.

Pour tester la dérivabilité,

v Jl@) = f(1)
f_(l) N xlir?— xr — 1
o 9@ = g()
z—1- z—1
i 8222
r—1— x—1
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k() — ()

Comme f” (1) # f'.(1), f n’est pas dérivable en 1.

2 (1)

Exemple 9.27. Soit
> +ar+1 siz <0,
fla) =1 . .
sin(2z) +b  siz >0.

Remarquons qu’en dehors de 0, f est partout dérivable, quelles que soient les valeurs de a et b.
Déterminons les parametres a, b de maniére a ce que f soit dérivable en z( = 0.

Pour étre dérivable en 0, il faut d’abord que f soit continue en 0. Commencons donc par assurer
que f est continue en 0. Pour cela, remarquons que f(0) =sin(2-0) +b =,

lim f(x) = lim (sin(2x) +b) = b,

z—0t z—0t

et
lim f(z) = lim (2* +azx +1)=1.

r—0~ rz—0~

Pour avoir la continuité en 0, on doit donc imposer b = 1.

Passons a la dérivabilité en 0. Puisqu’on peut dorénavant considérer que b = 1, on calcule d’abord

s i () = f(0)
J2(0) = hlgglﬁ h
2 _
_ lim (h*+ah+1)—1
h—0~ h
:hlggl_(ath) =a,
puis
Ly i 4 ) = f(0)
10 = i 0 SO
_ lim (sin(2h) +1) —1 - sin(2h) _
h—0+ h h—0t D

Comme f est dérivable en 0 si et seulement si f’ (0) = £/ (0), la seule possibilité est d’imposer
a = 2. o
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droite [_Jdérivée

il

f(z) — 1(0)

reponse r—0

= 0.0364

9.7 Dérivées d’ordres supérieurs

On verra, plus tard, que les dérivées d’ordre supérieur d"une fonction jouent un role important
dans l’analyse fine de cette fonction au voisinage d'un point (voir en particulier la Formule de
Taylor).

Soit f : I — R, dérivable en chaque point de l'intervalle ouvert I. On note sa dérivée, qui est la
premiére dérivée,

IR
Ensuite, si f) : I — R est elle-méme dérivable, on dit que f est deux fois dérivable sur /, et on
note sa deuxiéme dérivée comme suit :

f& = (1)

Aussi, pour k > 2, sila (k — 1)-eme dérivée f*~Y : I — R existe et est dérivable sur I, on dit que
f est k fois dérivable sur /, et on note sa k-éme dérivée comme suit :

f(k:) — (f(k—l))/ )

Remarquons que si f*) existe, cela entraine que f*~1 est dérivable, et donc en particulier conti-
nue.

Exemple 9.28. Si f(z) = 2™, alors

/() = ma!

f™(z) =m(m—-1)(m—2)---3-2-1=ml.

Puisque f(™ est une fonction constante, les dérivées d’ordre supérieur a m sont toutes nulles :

pour tout k > m,
fBx)y=0 VreR.

Exemple 9.29.Si f(x) = sin(wz), olt w est une constante. On a
f'(x) = wcos(w)
fP(z) = —w?sin(wz)

O (z) = —w? cos(wz)
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On peut écrire explicitement la k-eme dérivée, comme une fonction de k. En effet, en utilisant les
relations

sin(z + ) = cos(z) ,

sin(z 4+ m) = —sin(z),

ona
¥ (z) = Wk sin(wz + k%) .
o

Remarque 9.30. On ne peut pas toujours exprimer une grande dérivée aussi explicitement en
fonction de k! o

9.8 Fonctions continiiment dérivables

(ici, Video: v_derivee_C1.mp4)

Soit I C R un intervalle ouvert.

Un premier niveau de régularité que I'on a rencontré, pour une fonction f : I — R, est celui de
continuité. Ensuite, on a vu que la dérivabilité est un niveau de régularité plus fort (dans le sens out
toute fonction dérivable est continue).

Il est naturel d'introduire un niveau de régularité encore supérieur, plus fort que la dérivabilité,
en exigeant que la dérivée soit elle-méme continue :

Définition 9.31. Soit f : I — R, dérivable en tout point de /. Si f : I — R est continue, on
dit que f est contintiment dérivable sur /. On note C'(I) I'ensemble des fonctions contintiment
dérivables sur /.

Exemple 9.32. Sur I = R, considérons f(z) = z?sin(x). Puisque f est un produit d'un polyndéme

(dérivable) par un sinus (dérivable aussi), elle est dérivable. De plus,
f'(x) = 2z sin(x) + 2° cos(x) .

Comme [’ est une combinaison linéaire de produits de polyndmes par des sinus et cosinus, elle
est elle-méme continue. On en déduit que f est continiiment dérivable sur R : f € C*(R). o

Exemple 9.33. Sur |0, 1[, considérons f(z) = 1. Alors f est dérivable sur ]0, 1] et sa dérivée est
donnée par

1
flla)=——.
Comme f’ est aussi continue sur ]0, 1], ceci implique que f est continiment dérivable sur |0, 1] :
f e C'(]o,1)). o

Les polynomes, les fonctions trigonométriques, etc. sont des fonctions continiment dérivables
sur leur ensemble de définition.

Bien-stir, une fonction qui n’est pas dérivable en un point n’est pas contintiment dérivable. Mais
il est aussi possible qu'une fonction soit dérivable partout, sans étre contintiment dérivable :

Exemple 9.34. Soit
x| < 1 ) ,

+ —sin | — siz #0
5 x

siz=20.

flx) =

S YRS
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9.8. Fonctions contintiment dérivables

On remarque que f est continue en tout point, en particulier en 0 puisque
lim f(x) =0= f(0).
z—0

Ensuite, f est dérivable en tout point z # 0. Sur R*, sa dérivée se calcule a 1’aide des régles de
dérivation :

z 22 (1 )’

— 4+ —sin| —

2 ) T

n 20 . (1 1 1
—sin|{—) ——-cos|—].

o x 5 x
Ensuite, f est aussi dérivable en 0, puisque

s 1o (@) = £(0)
f(o)_}:lgcl) z—0
r 2 1
24 Lsin(=) -0

(LT (D))
o\ Ty L)) T

Testons maintenant la continuité de f'. Clairement, f’ est continue sur R*, puisque par l'expression
ci-dessus ce n’est qu'une combinaison de fonctions continues :

f(x) = %+2%sin (é) —écos (i) .

Pourtant, on remarque que lorsque z — 0, f'(x) n’a pas de limite, ce qui est dti a la présence de
£ cos(1). Ce terme n’ayant pas de limite en 0, /' n’est pas continue en 0. Ceci fait de f une fonction

qui est dérivable sur R, mais pas continiment dérivable. o

f'(x) =

N =

Donc f est dérivable sur tout R.

droite
\ dérivée

9.8.1 Fonctions k£ fois continiiment dérivables
Définition 9.35. C*(I) désigne 1'ensemble des fonctions f : I — R, k fois dérivables, telles que

fO ... f® existent et sont continues sur 7. On dit qu'une telle fonction est de classe C* (sur I).

Informel 9.36. Plus l'indice k est grand, plus une fonction f € C* est réguliere.

Remarquons que si f est k + 1 fois dérivable sur I, alors elle est de classe C*. On a donc les
inclusions suivantes :

CYI) > C2I) > - > CHI) > CHYI) > - -

NumChap: chap-calcul-differentiel, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 1 87


botafogo.saitis.net

9.8. Fonctions contintiment dérivables

1)

cCHD

C3(I)

9D

Exemple 9.37. Considérons f : R — R définie par f(x) = e*. Alors

f(l)(x) — f@)(:c) — f(3)(x) S — f(’“)(x) =...=¢%,

donc f € C*(R) pour tout k > 1. o
Exemple 9.38. Considérons f : R — R définie par

+z2 siz >0,
€T o
/() {—x2 siz<O0.

Montrons que f € C'(R). D’abord, f est clairement dérivable en tout point z,. En effet, si z > 0
alors f'(z) = (2?) = 2z, etsiz < 0alors f'(r) = (—z?) = —2z. Il faut maintenant considérer
2o = 0. Par un calcul direct,

fi0) = lim === = lim == =0,
oy — pi A = FO) =k
FL0) = Ji T i S =0,

Donc f/(0) = 0. Ainsi, f est dérivable partout, et on peut écrire sa dérivée

+2x six >0,
f(z)=<0 sizr=0,
—2x six <O0.

Plus simplement :

f'(z) = 2|z| Vo e R.

Puisque x — |z| est continue sur R, on en déduit que f’ est continue sur R, ce qui implique que
f € C'(R). Mais comme f’ n’est pas dérivable en 0, on a aussi que f ¢ C?*(R). o
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9.9 Extréma locaux et le Théoréme de Rolle

On a défini ici (lien vers la section m_fonctions_maximum_minimum_supremum_infimum)
la notion de maximum/minimum global pour une fonction réelle f : D — R.

Définition 9.39. Soit f définie en z, et dans son voisinage. On dit que

* f possede un maximum local en 7 si il existe § > 0 tel que
f(x) < flzo) Vi €]wo — 6,20 + 9]
% f possede un minimum local en z si il existe § > 0 tel que

f(z) = f(xo) Vz €lzg— 05,20+ 0].

V /mo.x. skh.l

Bien-stir, un maximum/minimum global est aussi local.

Le point de départ de cette section est le résultat suivant. Il suggere que la dérivée peut s’avérer
étre un outil pour la recherche de minimums/maximumes :

Lemme 24. Soit f définie en x et dans son voisinage. Si f possede un minimum/maximum local en x, et
si f est dérivable en x,, alors

f/(l’o) = 0 .

Preuve: Supposons que f possede un maximum local en zp : 30 > 0 tel que f(z) < f(zo) pour tout
x €1 :=]zg— 0,20+ 4.
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9.9. Extréma locaux et le Théoréme de Rolle

x Siz € I, x > zp, on a toujours f(x) — f(zg) < 0 puisque xy est un maximum local, et donc aussi
(puisque z — zg > 0)
F@) ~ fxo) _

<0
Tr — X

v

Xy — X
En prenant z — z, cela donne
Py — T TE )
szt T — X0
* En procédant de méme pour un z < zp, on
f&) = o) o

Tr — X
et donc en prenant z — z;;, on montre que f’(zg) > 0.

Puisque f est dérivable en xo, on doit avoir f'(z¢) = f/.(z0) = f_(x0), et puisque ce nombre est a la fois
<0et>0,0ona f'(xg) =0. O

L'affirmation réciproque n’est pas vraie : si f est dérivable en xz et si f'(x¢) = 0, cela n'implique
pas que f posséde un minimum ou un maximum local en ;!

Exemple 9.40. Prendre par exemple f(z) = 2*® au point xg = 0 :

x3

|
7 T

Comme f'(z) = 322, ona f’(0) = 0, bien que 0 ne soit ni un minimum ni un maximum local. ¢

Théoréeme 9.41 (Théoréeme de Rolle). Soit f : [a,b] — R continue, dérivable sur |a,b|. Si f(a) = f(b),
alors il existe ¢ €a, b[ tel que

f(e) = 0.

Preuve: Si f est constante, f(a) = f(z) = f(b) pour tout = €|a,b], sa dérivée est nulle et donc on peut
prendre n'importe quel point ¢ €]a, b, et avoir f’(c) = 0.

Supposons donc que f n’est pas constante. Comme f est continue sur l'intervalle compacte [a, b], elle atteint
son maximum en un point z* € [a, b], et son minimum en un point z, € [a, b]. Comme f n’est pas constante,
au moins un de ces points se trouve strictement a l'intérieur de l'intervalle. Supposons que c’est z* €]a, b|.
Comme z* est un maximum global, c’est aussi un maximum local, et par le lemme précédent f'(z*) = 0. O

L'interprétation géométrique du Théoreme de Rolle est claire : si le graphe d"une fonction lisse
(continue et dérivable) part d'un point A = (a, f(a)) et arrive en un point B = (b, f(b)) qui est a
la méme hauteur que A, alors il existe au moins un point de son graphe ot la droite tangente est
horizontale :
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ce
8e
o

Exemple 9.42. Soit f : [0,1] — R, définie par
f(z) := sin(r2?) cos(z) .
Comme f est continue et dérivable, et comme f(0) = f(1) = 0, il existe ¢ €]0, 1] tel que f'(c) = 0.

4

(|

Dans ce cas, c est solution de I’équation non-linéaire
2me cos(mc?) cos(c) — sin(me?) sin(c) = 0,
et ne peut pas étre donné explicitement. o

Parfois, le point c peut se calculer explicitement :
Exemple 9.43. Soit f : [-1,0] — R définie par

flz) =2 +z.
Ona f(—1) = f(0) = 0, et donc par le Théoreme de Rolle il existe ¢ €] — 1, 0] tel que f'(c) = 0.

§ix)

-4 c

De plus, comme f/(z) =42* +1,0na

1
f’(c):0<:>4c3—|—1:()<:>c:—31.

o

Bien-stir, si une des conditions du théoréeme n’est pas vérifiée, la conclusion du théoreme n’est
plus garantie (en général).
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Exemple 9.44. Soit f : [0, 2] — R, définie par

flx) =z —1].

Ici f(0) = f(2) = 1, mais il n’existe aucun ¢ €0, 2[ tel que f’(c) = 0.

L 4

Nibececcccana=

Ce n’est pas une contradiction avec le Théoreme de Rolle, puisque f ne satisfait pas aux hypo-
theses : elle est continue sur [0, 2], dérivable en tout point de |0, 2[ sauf en z = 1. o

9.10 Le Théoréme des accroissements finis

2

Le résultat suivant, appelé Théoréme des Accroissements Finis (parfois abbrégé “TAF” par la
suite), est une généralisation du Théoréme de Rolle :

Théoreme 9.45. Soit f continue sur |a, b], dérivable sur |a, b[ . Alors il existe ¢ €]a, b] tel que

o _ 1) = f(@)
o =221
Preuve: Définissons
o(@) = fa) — fla) - 1Oy )

Cette fonction est continue sur [a, b], dérivable sur |a, b, et g(a) = g(b) = 0. Par le Théoreme de Rolle, il
existe ¢ €]a, b[ tel que ¢'(c) = 0. Or

g@) = @) - I
donc ¢'(c) = 0 est équivalent a f/(c) = £ (bg:a(a). O
Le quotient
f() — f(a)
b—a

représente la pente du segment qui relie le point A = (a, f(a)) au point B = (b, f(b)). Donc
I'interprétation géométrique du théoreme des accroissements finis est la suivante : si le graphe
d’une fonction lisse part d'un point A et arrive a un point B, il doit exister au moins un point de
son graphe ot la droite tangente est parallele au segment AB :
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segment AB

dérivée

ce
X ]
o

9.10.1 Conséquence 1: Variation de f et signe de f’

(ici, Video: v_derivee_vs_variation.mp4)

Proposition 13. Soit f : [a,b] — R, continue, dérivable sur |a, b|. Alors
1) f est croissante sur [a,b] < f'(x) > 0 pour tout x €|a, b].
2) f est décroissante sur [a,b] < f'(z) < 0 pour tout x €|a, b|.

Preuve: Supposons que f est croissante sur [a, b]. Considérons un point = €|a, b[ quelconque. Comme f est
dérivable en z, sa dérivée est égale a sa dérivée latérale a droite :

f’(ac) _ f_/l_(x) — lim f(z) — f(x) )

z—axt Z—

Ce dernier quotient peut donc étre considéré pour des z > z, ce qui implique que le dénominateur z—z > 0,
et que le numérateur f(z) — f(x) > 0 (puisque f est supposée croissante). Donc le quotient est > 0, et donc
sa limite est aussi positive : f/(x) > 0.

Supposons maintenant que f/(z) > 0 pour tout x € [a, b]. Soient 1, z2 € [a, b], z1 < x2. On peut appliquer
le TAF sur [z, x2] : il existe ¢ €]z, z2] tel que

f(z2) — f(21)

= f'(¢)>0.
prag—— f(c)

Comme z3 — 21 > 0, ceci implique f(z2) > f(z1). Puisque ceci vaut pour toute paire x;, 23 (avec z1 < x2),
on a bien montré que f est croissante sur [a, b]. O

Remarque 9.46. On peut également montrer, sous les mémes hypothéses du théoreme, que
1) f'(z) > 0 pour tout x €]a, b] = f est strictement croissante sur [a, b
2) f'(x) < 0 pour tout x €]a, b] = f est strictement décroissante sur [a, b]

Mais les réciproques de ces affirmations ne sont pas vraies! En effet, la fonction f(z) = z° est
strictement croissante, mais sa dérivée s’annule en 0. o

Par la proposition ci-dessus, on peut étudier la variation d"une fonction dérivable, c’est-a-dire
trouver les intervalles sur lesquels elle est croissante ou décroissante, simplement en étudiant le
signe de sa dérivée.
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Exemple 9.47. Considérons f(z) = 177, définie et dérivable sur tout R. On a
) = z \  1+2?—z(2z) 1-2?
DE\1+22) T T axe? T Ut

Le signe de f’ permet ainsi de déterminer les intervalles sur lesquels f est croissante ou décrois-
sante :

v
+o
|

LoD ciereerdeces O o b
.'.

ras g e O =1
|

En plus du fait que f(z) — 0 lorsque + — +o00, ces informations permettent déja de produire une
esquisse raisonnable du graphe :

dérivée

<

La proposition ci-dessus peut aussi s’utiliser pour démontrer des inégalités “universelles” entre
fonctions :

Exemple 9.48. Montrons que

‘ex>1+x VmGR.‘

Sion pose f(z) :=e” — (1 + x), il s’agit donc de montrer que f(z) > 0 pour tout € R. Or

<0 si
>0 si

f'(x) :e”—l{

On conclut par la proposition que
* f est décroissante sur | — 0o, 0], et donc f(x) > f(0) pour tout z < 0,
* f est croissante sur [0, +oo], et donc f(0) < f(z) pour tout z > 0,
Dans tous les cas, f(z) > f(0) = 0, ce qui démontre 1'inégalité voulue.

On remarque que y = 1 + x est I’équation de la droite tangente au graphe de f(z) = ¢ au point
(0,1). On a donc en démontré que le graphe de f est toujours au-dessus de sa droite tangente :
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Exemple 9.49. On peut également montrer que

22
cos(x)}l—? Vr e R.

9.10.2 Conséquence 2: Les fonctions de dérivée nulle sont des constantes

Lemme 25. Soit f :]a,b|— R dérivable en tout point de ]a,b|. Si f'(x) = 0 pour tout x €]a, b, alors f est
constante.

Preuve: On montre que f est constante en montrant qu’elle prend, en tout point = de l'intervalle, la méme
valeur qu’en un point z fixé. Fixons donc g €]a, b[.

Prenons un autre point x €]a, b[. Supposons que x > x¢. Puisque f est dérivable sur |a, b], elle satisfait aux
hypotheses du TAF sur [z, 2] : il existe un point ¢ €]z, x| tel que

f(l') - f(xO) _ f/(C) )
T — X0
Mais comme f’(c) = 0, ceci implique que f(z) = f(xo).
Six < xg, on fait la méme chose sur [z, z¢]. O

Remarque 9.50. Dans le lemme précédent, il est essentiel que le domaine de la fonction soit un
intervalle, pas juste un ouvert! En effet, on peut trés bien avoir une fonction définie sur un domaine
qui est une union de deux intervalles ouverts, par exemple D =]0, 1{U]2, 3], dont la dérivée est
nulle partout, mais qui n’est pas constante :

. :
—r : ;
: i : i
(o] 1 2 3
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Comme conséquence du lemme, un résultat que ’on utilisera plus tard dans le chapitre sur l'in-
tégration :

Corollaire 10. Soient f,g : [a,b] — R continues et dérivables sur ]a,b. Si

f'(x) =g'(x)  Vx€a,b,

alors il existe une constante C telle que

Preuve: Soit h(z) := f(x) — g(z). Puisque
W(2) = f'(x) - ') =0 Va ela,b],

le lemme précédent garantit qu'il existe une constante C' telle que h(z) = C, et donc f(x) = g(z) + C, pour
tout z € [a, b)]. O

9.10.3 Conséquence 3 : Dérivées latérales et limites de la dérivée

Proposition 14. Soit f : [a,b] — R continue, dérivable sur ]a, b|.

1) Si lim, ['(x) existe et est finie, alors f est dérivable a droite en x = a, et
r—a

fila) = lim f(z).

z—at

2) Si liril f'(z) existe et est finie, alors f est dérivable a gauche en x = b, et
z—b~

fL(b) = lim f'(x).

z—b—

Preuve: Pour démontrer la premiere affirmation, calculons la dérivée a droite en a :

fe) = 1 SE @

z—at zZ—a

Appliquons le TAF sur [, 2] : il existe ¢, €]a, 2| tel que

z) — f(a
f( ) f( ) — f,(cz)
z—a
Or ¢, — a™ lorsque z — a™, et donc
. f(z) - f(a) . / . /

1 —r =] =1

ST T ARl AR,
ce qu’on voulait démontrer. O

Cette derniére proposition est utile pour tester la dérivabilité d"une fonction définie par morceaux,
au point de raccordement. En effet, soient g et 1 des fonctions dérivables, et soit

f() =

h(z) siz>x,.

{g(w) siz < @,
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Supposons que f est continue en z. (ce qui, ici, signifie que g(z.) = lim _, .+ h(z)). Pour vérifier si

[ est aussi dérivable en z,, onn’a a priori pas d’autre option que de calculer ses dérivées latérales
en z,,

(@) = lim 98 =9

er T — T = 9-(z.),
. h(z) — g(x.)
!/ L) = 1 —_
fi (@) Jim = —

et de voir si elles sont égales : f’ (z,) < fi(x,). Mais, puisque g (resp. h) est dérivable en tout
r < z, (resp. z > xz,) proche de z,, on peut éviter de passer par les dérivées latérales.

%""" hix)

X = X, &— X

En effet, la proposition précédente garantit que f’ (z,) = f (z.) si

lim f'(x) = lim f'(z),

T, T—rTx

c’est-a-dire si
lim ¢'(z) = lim A'(x).

T—T, a:—):cj

Exemple 9.51. Considérons la fonction suivante, déja rencontrée plus haut,

i 22 4+ar+1 siz<O0,
2
sin(2z) +b  siz >0,

et reposons la question : Est-il possible de choisir a et b de fagon a ce que f soit dérivable en 0?

On a vu que la continuité en 0 est garantie en imposant b = 1. Par la remarque ci-dessus, on peut
garantir la dérivabilité en 0 en imposant

lim (22 +az +1)" = lim (sin(2z) +b)’,

z—0— z—0t

c’est-a-dire

lim (224 a) = lim 2cos(2z),

z—0— z—0t

ce qui donne a = 2. o
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9.10.4 Une généralisation du Théoréme des accroissements finis

Le Théoreme de Rolle permet en fait de démontrer un résultat plus général que le Théoreme des
accroissements finis :

Théoreme 9.52. (Théoreme des Accroissements Finis généralisé (abbrégé “TAFG”) par la suite) Soient
f, g continues sur [a,b], dérivables sur |a, b[. Si g(a) # g(b), alors il existe c €|a, b] tel que

Par les propriétés de fet g sur [a, b], r est continue sur [a, b], dérivable sur |a, b[, avec

F) ~ fa)
90 —g(a)? )

De plus, on observe que r(a) = r(b) = 0. Donc, par le Théoréme de Rolle, il existe ¢ €]a, b[ tel que 7/(c) =
0. O

Remarque 9.53. En prenant g(x) = x, on voit que le TAF est un cas particulier du TAFG. o

9.11 Laregle de Bernoulli-l"'Hopital

(ici, Video: v_derivee_ BH.mp4)

Nous allons voir maintenant un outil puissant qui, lorsqu’il est bien utilisé, permet d’étudier des
indéterminations qu’aucune des méthodes présentées jusqu’ici ne permettait d’aborder.

Malgré tout, cet outil a un prix : il ne s’applique que dans certaines situations tres particulieres
(voir les hypotheses ci-dessous), et sa justification est délicate.
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Théoreme 9.54. (Regle de Bernoulli-I’Hopital) Soient f, g :]a, b|— R dérivables , telles que
1) g(z) # 0et ¢'(x) # 0 pour tout = €la,b|,
2) la limite
lim @
z—at g(z)

14 +o0 1
+o0

est une indétermination du type “3" ou , C'est-a-dire que

lim f(z) = lim g(x) =1L,
z—at

z—at

oit L € {0, 400, —oo}.

Si )
im L&) _ g,
z—at g’(.T)
ol R est soit un réel, soit +oo, soit —oo, alors
lim M =R.
z—at g(l’)

Le résultat ci-dessus reste valable si on remplace partout
* la limite x — a™ par x — b~, ou alors
* ]a, b] par |a, +oo] et la limite x — a™ par x — 400, ou alors
* |a,b[ par | — 0o, b| et la limite x — a™t par x — —oc.
Preuve:
Commengons par traiter lecasou L = 0 et R € R.

Fixons un z €]a, b[ (que 1'on fera ensuite — a™).

Comme lim,_,,+ f(z) = lim, ,,+ g(z) = L = 0, on peut prolonger f et g par continuité a [a, ], en posant
f(a) := 0, g(a) := 0. Comme maintenant f et g sont continues sur [a, z| et dérivables sur ]a, z[, on peut
utiliser la généralisation du Théoreme des accroissements finis (fin de la section précédente), pour garantir
l'existence d"un point ¢, €|a, z| tel que

f(x) = f(a) ,

P = gy =gl 7

Ceci nous permet de récrire le quotient (puisque ni g ni ¢’ ne s’annulent dans |a, b]) :

flz) _ fl@)=0 _ flz)—fla) _ [f(c)

g(z)  glx)—0  g(x)—gla)  ¢'(cs)

Maintenant, prenons la limite z — a*. Comme a < ¢, < z,ona ¢, — a™ lorsque z — a™, et donc

f@) o Ple) o 1)

z—at g(l?) z—at g’(cm) N r—at g’(:c)
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Passons maintenant au casou L = +oco et R € R.

On adonclim,_,,+ f(z) = 400, lim,_,,+ g(x) = 400, et la limite

lim I'(z)

z—at g/ (JJ)

est finie.

]
L]
SR
o X %o
En préparation, fixons a < z < xy < b et écrivons
flz) f@)  f@) = f@o)|, |f(@)— flxo)
s~ <l o | Lot "
RGN () TGRS R
~lg(2) NG
— :'¢zo(w)
=z ()
Maintenant,
f(z) (z)
S~ Bl e @ + @)
i)
<[y Blan(@) + | Blen(@) + (2

- f(z) e
et on peut isoler |77 — R‘ dans cette derniere inégalité :

o) _ |  Mipa(e) 4 (e)

gix) 1—- Sowo(x)

Voyons maintenant comment le c6té droit peut étre rendu arbitrairement petit en prenant = et o suffisam-
ment proches de a. D’abord, appliquons le TAFG sur [z, zo] : il existe ¢, 4, €]z, o[ tel que

N f(z) — f(zo) f/(cz,aso)
OB s

— R|.
g/(cx,xo)

Par hypothese, J; ,/((3 — R. Donc en fixant € > 0, on peut prendre un xy > a suffisamment proche de a,
de fagon a ce que pour tout a < x < o, 0 < 95, (x) < €. Ensuite, remarquons qu’a z, fixé, on a toujours
lim,_,,+ ¢z, (z) = 0. On a donc

tim |1 _ R‘ <e
g9(z)

z—a™t
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Comme ¢ > 0 est arbitraire, on a bien montré que

im £ _ g,
z—at g 1‘)

ce qu’on voulait démontrer. O

La regle de BH, si elle s’applique de part et d’autre d"un point a, permet évidemment de calculer
des limites z — a :

Exemple 9.55. Etudions la limite
. sin(z) —z
lim —————
z—0 T
Clairement, f(z) = sin(z) — z et g(z) = 2 satisfont aux hypotheéses du théoréme : toutes deux
sont dérivables dans un voisinage de = 0, ni g ni ¢’ ne s’annulent dans un voisinage épointé de
x = 0, et toutes deux tendent vers zéro lorsque x — 0. On peut alors étudier la limite du quotient

des dérivées : /
lim / (91;) = lim

z—0 g’(x) z—0 3x2 6

cos(z) -1 1

Comme cette limite existe et est finie, on peut conclure par le théoreme que

v o fle) o fi=) 1
z—0 3 _}:g%m_alclgtl)g’(x)_ 6

O

Informel 9.56. On n’utilise surtout pas la regle de BH pour calculer des limites fondamentales,
telles que
lim sin(x)

z—0 X

=1 W

En effet si on voulait utiliser BH pour cette limite, on devrait dériver le sinus : (sin(z))’ = cos(z).
Or si on relit la preuve de comment on montre que la dérivée du sinus c’est le cosinus, on se rend
compte qu’elle repose sur la connaissance de ... lim,_,g % !

Donc la limite “lim,_,q = 1” doit étre considérée comme fondamentale, calculée uniquement
a partir de la définition de base du sinus, dans le cercle trigonométrique.

sin(x)

Méme si elle est formulée pour des indéterminations qui concernent des quotients, la regle de
BH permet en fait de calculer des indéterminations de tous les types. Ceci se fait en récrivant la
fonction dont ont aimerait calculer la limite, de fagon a y faire apparaitre un quotient.

Exemple 9.57. (Une indétermination “0 - c0”)

1 1

lim zlog(zx) = lim ogl(a:) B iy

z—07F z—0F p z—0t — 2

=— lim z =

z—07t
o
Exemple 9.58. (Une indétermination “1°°”)
. X z
lim ( ) :
z—+oo\T + 2

Puisque _%5 > 0 pour tout z suffisamment grand et positif, on peut exponentier :

(x —II— 2)3: - exp(xlog(x _‘T_ 2)>
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Comme l’exponentielle est continue, on pourra rentrer la limite (une fois qu’on aura vérifié que
la limite dans 'exposant existe) :

. € x .
1 —exp(_lim 2l )
m—1>1-il-loo($+2) *P z—1>I-‘yI-1c>ox g(I+2)
Etudions donc la limite a l'intérieur de I'exponentielle. En réarrangeant, on fait apparaitre une

limite “ g 7

log(z) — log(x + 2)

lim :zzlog( ) = lim il
T——400 T+ 2 ——+00 p
1_ 1
BH lim & z+2
r—+00 —%
€T
2
= —2 lim = -2

On a donc

T xT
lim (——) =exp(~2).
ac—1>1:|—noo x+2 exp(=2)

<

Informel 9.59. Avant de se lancer corps et ame dans l'utilisation de la regle de BH, on a tout
intérét de s’arréter un moment et se demander si elle est vraiment nécessaire, et surtout si ses
hypothéses sont satisfaites...

Exemple 9.60. Considérons

. sin(z") cos(sin(z?))
lim .
z—0 z7
Numérateur et dénominateur sont des fonctions dérivables , mais est-ce qu’on veut vraiment se

mettre a dériver le numérateur?

Or on voit que la composée cos(sin(z®)) a une limite qui vaut 1 (différente de zéro), donc elle
ne pose pas de probleme, on peut simplement la séparer du reste, puis faire un changement de
variable z = z7, pour obtenir

. sin(z7) cos(sin(2®)) = (lim cos(sin(z®))) <lim Sin(x7))

x—0 x7 z—0 z—0 x7
]
sin(z
= lim (2) =1.
z—0 z
o
Exemple 9.61. Considérons
.z +sin(2?
lim (z7)
T—00 3x
Cette limite est de la forme lim,, _, , % et se calcule directement, en mettant en évidence le terme

dominant au numérateur,

. 2 (1 + sin(z?) 1 . 2 1
hmwzhmwzhm _+Sln($) _ L
Cette limite fournit un exemple de cas olt numérateur et dénominateur sont tous les deux déri-

. . f/ x y . . .
vables, mais le quotient ﬁ n’a pas de limite puisque

f'(x) 14 2xcos(z?)
g'(x) 3 ’
qui n’a pas de limite lorsque + — oo. Donc la regle de BH ne s’applique pas. o

202 NumChap: chap-calcul-differentiel, Derniére compilation: 2025-09-04 13:37:16+02:00. (Version Web: botafogo.saitis.net)


botafogo.saitis.net

9.11. Laregle de Bernoulli-'Hopital

9.11.1 Utilisation répétée de la régle

L’idée utilisée dans ce dernier exemple permet de revenir sur quelque chose que nous avons déja
rencontré dans le chapitre sur les suites, a savoir la hiérarchie de comportements a 1'infini des
polyndmes, exponentielles et logarithmes.

On aura alors parfois besoin d’utiliser la regle de BH plus d"une fois :

Exemple 9.62.

I 2* pu I 2 BH 2 .. 1 2 0=0
11m — = 11m = — 111m = — = .
r—00 3T T—00 36355 3 z—o0 363$ 9

Généralisons :

Lemme 26. Pour toute base a > 1, tout o« > 0 et tout m > 0,

«a 1 @
m S —0,  lim (8@
r—o00 qMT T—00 qEn

=0.

Preuve: Considérons la premiere limite. Deux remarques permettent de simplifier le calcul.

* D’abord, on peut toujours écrire

ot m' = mlog(a). Or puisque a > 1, on a m’ > 0. Donc il suffit de démontrer le résultat pour la base
e.

* Puisque o < |«r] + 1, il suffit aussi de démontrer le résultat pour des « entiers, c.-a-d. o« = k € N.

Fixons donc m > 0, et montrons que pour tout entier k£ > 1,

k
. T
li =0.
x—o00 eMT
Danslecasou k =1,
T BH ,. 1
lim = lim =
r—o0 eMT r—00 M em*

Supposons alors que le résultat a été démontré pour un entier k. On a

) xk—i-l BH .. (xk—i-l)/
lim = lim
r—o0 e"MT T—00 (emx)/
k+1 xk
= —— lim
m x—oo eMT
=0 ,

et donc le résultat est vrai pour k + 1.

La deuxiéme limite est une conséquence de la premiere. En effet, ne posant y = log,(z),

im U08a@) Yt
T—00 xm y—oo gy
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9.12 Sur la recherche des extrema d’une fonction sur un inter-
valle [a, b]

Passons maintenant a 'utilisation de la dérivée dans la recherche des extrema globaux d'une
fonction.

On a vu (lien vers la section m_fonctions_continuite_sur_a_b) que lorsque f : [a,0] — R
est continue, elle atteint son minimum et son maximum :

s 1) max £ix)
x¢[o,b)

>

Dans cette section, on décrit un algorithme qui permet (en principe) de trouver ces extrema par le
calcul.

Considérons, pour fixer les idées, la recherche du maximum global d’une fonction continue f :
[a,b] — R. Par simple observation, puisqu’on sait qu’il est atteint quelque part sur [a, b], on peut
facilement lister toutes les possibilités :

1) Il peut étre atteint sur les bords, enz = aouen z = b.

2) Il peut étre atteint a l'intérieur de l'intervalle, c.-a-d. dans ]a, b]. Mais comme c’est un maxi-
mum global, il est aussi local. Donc si f est dérivable en ce point, sa dérivée s’y annule. Et
si elle n’est pas dérivable, on traite le cas séparément.

Cette simple distinction des cas nous méne directement a un algorithme pour la recherche du
minimum et du maximum de f :

1) On commencera par chercher les points stationnaires, c’est-a-dire les points = €la, b ou f
est dérivable et s’annule : f'(x) = 0, ainsi que les points de ]a, b ot f n’est pas dérivable.

2) On regardera les valeurs de la fonction sur le bord de l'intervalle, en z = a et = b, et on les
comparera avec les valeurs en chacun des points trouvés a I'étape précédente.

3) Apres avoir listé toutes ces valeurs, on garde la plus grande, et la plus petite.

Remarque 9.63. On a vu (dans Continuité sur un intervalle compact (lien vers la section m_
fonctions_continuite_sur_a_b)) que si f : [a,b] — R est continue, alors son ensemble
image est un intervalle fermé et borné, donné par

Im(f) = [Jéﬂf})} flx), mex f (z)],

et peut donc étre trouvé a 'aide de 1’algorithme décrit ci-dessus. o

Exemple 9.64. Cherchons les extremas de la fonction f(z) = 3z* + 42® — 1222 sur [—1, 2].
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9.12. Sur la recherche des extrema d’une fonction sur un intervalle [a, b]

1) Points stationnaires :

f'(x) =12(2° + 2% — 22) = 122(2” + = — 2)
= 12z(z + 2)(z — 1),

donc la dérivée est nulleen —2 ¢ [-1,2],en 0 € [-1,2] eten 1 € [—1,2]. On garde :

2) Sur les bords :

fC) =13, f(2)=32

En comparant les quatre valeurs encadrées ci-dessus, on voit que

% [ atteint son maximum global en z = 2 (sur le bord)

% [ atteint son minimum global en = —1 (sur le bord)

En particulier,
Im(f) =[-13,32].
o

Exemple 9.65. Considérons f(z) = |2?(x — 2)| sur l'intervalle [1,3]. Comme f : [1,3] — R est
continue, elle atteint son minimum et son maximum. On commence par écrire

5 2Pz —-2) size[l,2],
vl =2 = {:z:g(x —2) siz €]2,3].

1) Points stationnaires : Sur |1, 2|, f’(z) = (4 — 3x), donc deux points ot la dérivée s’annule,
en 0 ¢|1,2[eten 3 €]1,2[:

32
f(%):2—7

Sur |2,3|, f'(x) = x(3z — 4), donc ne s’annule pas.

2) Points ol f n’est pas dérivable? Seul candidat : x = 2. En effet,

lim f'(z) = lim (z(4 — 3z)) = —4

r—2~ r—2~
li "(x) = i —4))=+4
lim f'(2) = lim (o(3z — 4)) = +
Donc on garde
f(2)=0
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3) Sur les bords :

fH=1 j(3)=9

On conclut que f
* atteint son minimum en x = 2,

* atteint son maximum en z = 3 (sur le bord).

7 _ 4 N . . .
Remarquons qu’en x = 3, f possede un maximum, qui est local mais pas global.

On a aussi montré que
Im(f) = 10,9]

9.13 Dérivée seconde et convexité/concavité

(ici, Video: v_derivee_convexes.mp4)

Rappelons qu’une fonction f est convexe si pour toute paire de points x; < 3, et pour tout
A €0,1],
FL =Nz + Azg) < (1= N) f(z1) + Af(22).

L'interprétation géométrique étant la suivante : si on choisit deux points quelconques sur le
graphe de f, le segment qui les relie est entierement au-dessus du graphe.

Or on peut remarquer que lorsque f est dérivable, c’est-a-dire lorsque f’(x) est défini pour tout z,
alors la convexité semble étre équivalente a la croissance de = — f'(z) :

f'(z) = -0.261237

Sur I'animation ci-dessus, on a une fonction qui est manifestement convexe et dérivable, et on
observe que sa dérivée est croissante. Ceci implique que si la dérivée est dérivable, et si la dérivée
de la dérivée, c’est-a-dire la dérivée seconde, est positive, alors la fonction doit étre convexe. Plus
précisément :
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9.13. Dérivée seconde et convexité/concavité

Théoreme 9.66. Soit I un intervalle ouvert, f : I — R deux fois dérivable sur I (f est dérivable, et f' est
aussi dérivable sur ).

1) Si f"(x) = 0 pour tout x € I, alors f est convexe sur 1.
2) Si f"(z) < 0 pour tout x € I, alors f est concave sur 1.

Preuve: 11 suffit de démontrer la premiére implication. Remarquons d’abord que comme f” > 0, f’ est
croissante sur I. Soient 21 < x2 dans I. Fixons A €]0, 1] et posons z := (1 — A\)z; + Axa.

t
l, c'i % Cl x-z

On applique deux fois le théoreme des accroissements finis :

* Sur [z1, 2] : il existe ¢ €]z, 2| tel que

ey L) = Fa)
zZ — I
* Sur [z, x9] : il existe ¢y €]z, x2[ tel que
f,(CQ) — f(.%'Q) — f(Z)
xro — 2

Remarquons que comme c; < ¢, et puisque f " est croissante,

fler) < flea)
Donc
f2) = f@) < flle)(z—a1)  [-(1=2)
flaz) = f(2) = fl(e)(w2—2)  [-A
En soustrayant les deux inégalités (multipliées par 1 — A et A), on trouve
F@={ =N F (@) + Af(2)} <
) (M=) (z —21) = Mz — 2)) =0.

=0

On a donc montré que

f(2) A=) f(z1) + Mf(22) .

O
Exemple 9.67. Prenons f(z) = z? sur R. Comme
f"z)=2>0 VreR,
le théoreme garantit que f est convexe. o

Exemple 9.68. Prenons f(z) = e” sur R. Puisque
f"(x)=€e">0 VzeR,

le théoreme garantit que f est convexe.
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e
o

Exemple 9.69. Considérons maintenant f(z) = log(z), sur R*.. Comme

Fla)= -2 <0  VreRr:

xTr) = ,’];‘2 X 4+

le théoreme entraine que f est concave :

4 ||n lﬁ.)

o

Exemple 9.70. Considérons le polyndme f(x) = 2* — 2%, et cherchons les intervalles sur lesquels
f est convexe/concave. Puisque f est deux fois dérivable, I'étude du signe de f”(z) = 2(62* — 1)

donne :

Y + Y

} + & I2C
s-'aw.. 2": + 0 - O +
- P u .E / \ :: \-/
Gromtie : (comvexe) i (cowcave) (convexe)

LN /’}‘

poiuts 4’ indlexion

On en déduit par le théoreme que :
* [ est convexe sur | — oo, —4/1/6],
* f estconcave sur | — /1/6,++/1/6],

* f estconvexe sur |+ /1/6, +00].
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f'(z) = -3.124000

A
Ll

Les points Py = (£4/1/6, f(£+/1/6)) sont des points d’inflexion : ce sont des points du graphe ot
la nature de la courbe change, passant de concave (resp. convexe) a convexe (resp. concave). ¢
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