
Chapitre 9

Dérivée et calcul différentiel

9.1 Définition de la dérivée, exemples

(ici, Video: v_derivee_introduction.mp4)

Une question géométrique naturelle, et très utile pour l’étude d’une fonction, est de savoir com-
ment calculer l’équation de la droite tangente au graphe d’une fonction, en un point (x0, f(x0)) :

Pour connaître l’équation de cette droite, de la forme

y = mx+ h ,

on commence par chercher sa pente m. Et quand on cherche la pente d’une droite, on a besoin de
deux points sur cette droite et ici, on n’en a qu’un, à savoir le point (x0, f(x0)).

L’idée est de passer par un processus de limite. En effet, introduisons un deuxième point sur le
graphe, (x, f(x)), où x est un point différent de x0, et considérons la sécante passant par les points
(x0, f(x0)) et (x, f(x)). La pente de cette sécante est donnée par

f(x)− f(x0)

x− x0
.

Lorsque x est proche de x0, cette pente approxime celle de la droite que l’on cherche, m. Dans la
limite x→ x0 (tester sur l’animation ci-dessus), elle devrait même tendre exactement vers m :

lim
x→x0

f(x)− f(x0)

x− x0
= m.

L’existence de la limite ci-dessus n’est pas garantie en générale.
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9.1. Définition de la dérivée, exemples

Définition 9.1. Soit f définie en x0 ∈ R et dans son voisinage. On dit que f est dérivable en x0 si
le nombre f ′(x0) défini par la limite

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

existe (et est fini). On appelle f ′(x0) la dérivée (ou nombre dérivé) de f au point x0.

Remarque 9.2. Dans la limite qui définit f ′(x0), ci-dessus, la variable x est utilisée uniquement
pour calculer la limite ; on dit qu’elle est muette. On donc peut écrire f ′(x0) de différentes ma-
nières :

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
z→x0

f(z)− f(x0)

z − x0

= lim
h→0

f(x0 + h)− f(x0)

h
,

où, dans la dernière égalité, on a fait le changement de variable h := z − x0. ⋄
Exemple 9.3. Soit f(x) = x2. Calculons sa dérivée au point x0 = 1 :

f ′(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

x2 − 12

x− 1

= lim
x→1

XXXX(x− 1)(x+ 1)
XXXx− 1

= lim
x→1

(x+ 1)

= 2 .

Donc la tangente à la parabole au point d’abscisse x0 = 1 a une pente de 2 (voir l’animation ci-
dessous). Son équation est donc de la forme y = 2x + b, et comme elle doit passer par le point
(1, f(1)) = (1, 1), on trouve b = −1. Donc la tangente au point (1, 1) a pour équation y = 2x−1. ⋄

Exemple 9.4. Soit f(x) = 1
x
. Au point x0 = −2,

f ′(−2) = lim
x→−2

f(x)− f(−2)

x− (−2)
= lim

x→−2

1
x
− 1

−2

x+ 2
= −1

4
.

⋄

NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 165

botafogo.saitis.net


9.1. Définition de la dérivée, exemples

9.1.1 Origines possibles de la non-dérivabilité en un point

Voyons quelques exemples de fonctions qui ne sont pas dérivables.
Exemple 9.5. Considérons

f(x) =

{
x sin( 1

x
) si x ̸= 0 ,

0 si x = 0 .

Au point x0 = 0, le rapport donnant la pente de la droite de la sécante est

f(x)− f(0)

x− 0
= sin( 1

x
) ,

qui comme on le sait ne possède pas de limite lorsque x→ 0. Donc f n’est pas dérivable en 0 :

⋄
Exemple 9.6. Considérons f(x) = |x|. Au point x0 = 0, la dérivée s’obtient en prenant la limite
x→ 0 du rapport

f(x)− f(0)

x− 0
=

|x|
x

=

{
−1 si x < 0 ,

+1 si x > 0 .

Or ce signe n’a pas de limite quand x → 0, donc f n’est pas dérivable en x0 = 0. Cela fait sens
du point de vue géométrique, puisqu’en ce point son graphe ne possède pas de droite tangente
naturellement définie :
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9.1. Définition de la dérivée, exemples

⋄
Exemple 9.7. Considérons f(x) = 3

√
x. Au point x0 = 0, la dérivée s’obtient en prenant la limite

x→ 0 du rapport
f(x)− f(0)

x− 0
=

3
√
x

x
=

1
3
√
x2
.

Or cette limite est +∞, donc f n’est pas dérivable en x0 = 0. Cela fait sens du point de vue
géométrique, puisqu’en ce point son graphe possède une droite tangente, mais verticale (de pente
infinie) :

⋄

9.1.2 Taux d’accroissement et la notation de Leibniz

De par sa signification géométrique, la dérivée est toujours une limite d’un quotient de deux
quantités qui tendent vers zéro. (C’est pour ça que les indéterminations “0

0
” sont si importantes !)

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

Interprétons cette limite en introduisant des nouvelles notations :

⋆ ∆f := f(x)− f(x0) représente l’incrément de la fonction.
⋆ ∆x := x− x0 représente l’incrément de la variable.

D’un point de vue quantitatif, ces deux incréments sont petits lorsque x est proche de x0 ; ∆f dit
exactement de combien f varie lorsque x s’écarte de x0 d’une distance ∆x :
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9.1. Définition de la dérivée, exemples

Ensuite, l’existence de la dérivée,

f ′(x0) = lim
x→x0

∆f

∆x
,

signifie que quand l’incrément ∆x est petit, alors ∆f est essentiellement proportionnel à ∆x, la
constante de proportionnalité étant f ′(x0) :

∆f ≃ f ′(x0)∆x

On conclut que la dérivée f ′(x0) représente le taux d’accroissement local de f en x0 : si on varie la
variable de x0 à x0 + ∆x, alors la valeur de la fonction passe de f(x0) à f(x0) + ∆f , où ∆f est
essentiellement proportionnel à ∆x, comme dans la relation ci-dessus.

Informel 9.8. Si on admet pendant un instant qu’il est possible de considérer des incréments
infiniment petits, de la fonction et de la variable, que l’on notera respectivement df et dx, alors la
dérivabilité de f en x0 signifie que ces deux infiniment petits sont proportionnels, la constante de
proportionalité étant précisément la dérivée en x0 :

df = f ′(x0)dx .

La notation suivante, appelée notation de Leibniz, est donc naturelle :

f ′(x0) =
df

dx
(x0)

9.1.3 Dérivabilité implique continuité

On l’a dit, pour que f soit dérivable en x0, il faut que sa droite tangente soit bien définie ; elle doit
être assez lisse en x0. En particulier, son graphe ne peut pas faire de saut en x0 :

Lemme 23. Si f est dérivable en x0 alors elle est continue en x0.

Preuve: Si f est dérivable en x0, alors en multipliant et divisant par x− x0,

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

[f(x)− f(x0)

x− x0︸ ︷︷ ︸
→f ′(x0)

]
(x− x0)︸ ︷︷ ︸

→0

= f ′(x0) · 0
= 0 .

Donc limx→x0 f(x) = f(x0), et donc f est continue en x0.

Remarque 9.9. Attention, la réciproque de l’affirmation du lemme n’est pas vraie. C’est-à-dire
que “continuité” n’implique pas “dérivabilité”. Par exemple, on a vu que f(x) = |x| n’est pas
dérivable en x0 = 0, pourtant elle est bien continue en ce point. ⋄

On a vu plus haut des fonctions (|x|, 3
√
x) qui étaient continues partout mais pas dérivables en un

point. On pourrait, en adaptant ces exemples, construire des fonctions qui sont continues partout
mais pas dérivables en un nombre arbitraire fini de points. Il est naturel de se poser la question
de savoir s’il existe des fonctions qui sont continues partout mais dérivables nulle part. De telles
fonctions existent...
Exemple 9.10. Considérons

f(x) :=
∑
n⩾0

cos(9nx)

2n
.
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9.2. Dérivée et approximation linéaire

Puisque

0 ⩽

∣∣∣∣cos(9nx)2n

∣∣∣∣ ⩽ 1

2n
,

cette fonction est bien définie pour tout x ∈ R ; elle est paire. Avec un peu plus de travail, on peut
montrer qu’elle est aussi continue sur R. Et avec encore un peu plus de travail, on peut montrer
qu’elle n’est dérivable en aucun point de R. ⋄

9.2 Dérivée et approximation linéaire

Répétons l’intérêt géométrique de la dérivabilité : lorsque f est dérivable au point x0, le nombre
D = f ′(x0) représente la pente de la droite tangente au graphe de f au point (x0, f(x0)). Mais
la dérivabilité représente aussi un intérêt analytique, puisqu’elle fournit une façon particulière de
représenter la fonction au voisinage de x0.

Commençons par illustrer ce fait sur un exemple simple :

Exemple 9.11. Considérons f(x) = x2 au voisinage de x0 = 1. On a déjà vu dans la section précé-
dente que f était dérivable en x0 = 1, puisque

f ′(1) = lim
x→1

x2 − 12

x− 1
= 2 .

Si on définit, pour tout x ̸= 1,

r1(x) :=
x2 − 12

x− 1
− 2 ,

alors

lim
x→1

r1(x) = 0 .
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9.2. Dérivée et approximation linéaire

On peut de plus écrire

x2 = 12 + (x2 − 12)

= 12 +
x2 − 12

x− 1
(x− 1)

= 12 +
(
2 +

(x2 − 12

x− 1
− 2
))

(x− 1)

= 12 +
(
2 + r1(x)

)
(x− 1)

= 12︸︷︷︸
=f(1)

+ 2︸︷︷︸
f ′(1)

(x− 1) + r1(x)(x− 1)

En d’autres termes, on peut écrire

f(x) = f(1) + (f ′(1) + r1(x))(x− 1)

= f(1) + f ′(1)(x− 1) + r1(x)(x− 1)

La fonction x 7→ f(1) + f ′(1)(x− 1) n’est autre que l’équation de la droite tangente au graphe de
x2 en x0 = 1 ; elle approxime les valeurs de f(x) lorsque x est proche de x0 :

f(x) ≃ f(1) + f ′(1)(x− 1)

Puis, le terme “+r1(x)(x − 1)” est la correction qui donne l’écart entre la vraie fonction et son
approximation. ⋄

Ce que nous venons d’apprendre dans le cas f(x) = x2 est vrai plus généralement :

Théorème 9.12. Soit f une fonction définie en x0 et dans son voisinage. Alors : f est dérivable en x0 et
sa dérivée en ce point vaut f ′(x0) = D si et seulement si il existe une fonction rx0(x) définie dans un
voisinage épointé de x0 telle que limx→x0 rx0(x) = 0, et telle que f peut être représentée, dans ce voisinage,
comme suit :

f(x) = f(x0) + (D + rx0(x))(x− x0) .

Preuve: Si f est dérivable en x0 et f ′(x0) = D, alors

lim
x→x0

f(x)− f(x0)

x− x0
= D ,

que l’on peut écrire

lim
x→x0

{f(x)− f(x0)

x− x0
−D

}
= 0 .

Donc si on définit la fonction

rx0(x) :=
f(x)− f(x0)

x− x0
−D ,

alors par ce qui est écrit au-dessus, cette dernière satisfait limx→x0 rx0(x) = 0. De plus, en isolant f(x) dans
la définition de rx0 , on voit que

f(x) = f(x0) + (D + rx0(x))(x− x0) .
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9.2. Dérivée et approximation linéaire

Inversément, si cette relation est satisfaite pour une fonction rx0 satisfaisant limx→x0 rx0(x) = 0, alors

f(x)− f(x0)

x− x0
= D + rx0(x) ,

et la limite de ce quotient existe puisque

lim
x→x0

f(x)− f(x0)

x− x0
= D + lim

x→x0
rx0(x) = D ,

ce qui implique que f est dérivable en x0 et que f ′(x0) = D.

Une fonction dérivable en x0 peut donc s’écrire

f(x) = f(x0) + (f ′(x0) + rx0(x))(x− x0)

= f(x0) + f ′(x0)(x− x0) + rx0(x)(x− x0) ,

où limx→x0 rx0(x) = 0.

Cette représentation est utile si on considère x proche de x0, car dans ce cas le terme rx0(x)(x −
x0) est petit, et si on le néglige, on obtient une approximation de f au voisinage de x0, appelée
l’approximation linéaire :

f(x) ≃ f(x0) + f ′(x0)(x− x0)

Cette approximation est celle qui consiste simplement à approximer le graphe de f , proche de x0,
par celui de sa droite tangente au point (x0, f(x0)) :

9.2.1 Sur les deux premiers niveaux de régularité d’une fonction

On a pour l’instant deux notions de régularité pour une fonction f au voisinage d’un point x0.
Décrivons ce qu’elle représente en qualité d’approximation.

⋆ La continuité : Si f est continue en x0, alors les valeurs de f(x) sont proches de f(x0) lorsque
x est proche de x0, qui est une approximation d’ordre zéro de f au voisinage de x0 :

f(x) ≃ f(x0)

⋆ La dérivabilité : Si f est dérivable en x0, alors elle peut être représentée comme ci-dessus, et
si on néglige rx0(x), on obtient l’approximation linéaire, appelée aussi approximation du
premier ordre, de f au voisinage de x0 :

f(x) ≃ f(x0) + f ′(x0)(x− x0)

L’approximation à l’ordre zéro revient à approximer f(x) par la constante f(x0), mais l’approxi-
mation linéaire est plus précise, puisqu’elle tient compte de comment f varie au voisinage de x0 !

Comparons ces approximations sur un exemple simple :
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9.3. Règles de dérivation

Exemple 9.13. Supposons que l’on veuille calculer 1.9984.

Écrivons 1.9984 = f(1.998), où f(x) = x4. Ce que l’on aimerait faire est donc d’estimer la valeur
de f en un point x = 1.998 qui est proche de x0 = 2.

⋆ À l’ordre zéro,

1.9984 = f(1.998) ≃ f(2) = 24 = 16 .

⋆ Au premier ordre,

1.9984 = f(1.998) ≃ f(2) + f ′(2)(1.998− 2)

= 24 + 4 · 23(1.998− 2)

= 15.936

Sachant que la vraie valeur est 1.9984 = 15.9360959..., l’approximation à l’ordre zéro représente
donc une erreur d’environ 0.4%, alors que celle du premier ordre, moins de 0.001% ! ⋄

Nous verrons plus tard comment aller au-delà de l’approximation linéaire, lorsque nous calcule-
rons des développements limités.

9.3 Règles de dérivation

(ici, Video: v_derivee_regles.mp4)

Pour l’instant, la dérivée associe à une fonction f et un point x0 le nombre f ′(x0). Si on sait calculer
la dérivée en chaque point x0 du domaine de f , la dérivée devient une nouvelle fonction,

x0 7→ f ′(x0) ,

et comme on aimerait plutôt voir x0 comme un variable, on écrira plutôt

x 7→ f ′(x) .

On dira que f , définie sur un ouvert, est dérivable si elle est dérivable en tout point x0 de son
ensemble de définition, et donc si sa dérivée f ′ est définie en tout point de cet ouvert.

Exemple 9.14. La fonction f(x) := x2 est dérivable sur R, et sa dérivée est donnée par f ′(x) = 2x.
En effet, pour un x0 ∈ R fixé,

f ′(x0) = lim
h→0

(x0 + h)2 − x20
h

= lim
h→0

(x20 + 2x0h+ h2)− x20
h

= lim
h→0

(2x0 + h)

= 2x0 .

⋄
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9.3. Règles de dérivation

9.3.1 Sommes et produits

Pour commencer, montrons que si deux fonctions sont dérivables en un point, alors leur somme
et leur produit le sont aussi, et donnons les expressions des dérivées de ces fonctions :

Proposition 10. Soient f, g dérivables en un point x0. Alors la somme et le produit de f et g sont dérivables
en x0, et

1) (f + g)′(x0) = f ′(x0) + g′(x0)

2) (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

La deuxième propriété implique en particulier que pour toute constante C,

(Cf(x))′ = Cf ′(x) .

En effet, la dérivée d’une fonction constante est nulle : C ′ = 0.
Preuve: En écrivant la définition de la dérivée de f + g en x0 et en réarrangeant un peu les termes,

(f + g)′(x0) = lim
x→x0

(f + g)(x)− (f + g)(x0)

x− x0

= lim
x→x0

f(x) + g(x)− f(x0)− g(x0)

x− x0

= lim
x→x0

{f(x)− f(x0)

x− x0
+
g(x)− g(x0)

x− x0

}
= f ′(x0) + g′(x0) .

Cette dernière montre que f + g est dérivable en x0, et que sa dérivée en ce point vaut f ′(x0) + g′(x0). Par
définition, la dérivée de f · g en x0 est

(f · g)′(x0) = lim
x→x0

(f · g)(x)− (f · g)(x0)
x− x0

= lim
x→x0

f(x)g(x)− f(x0)g(x0)

x− x0

En insérant ±f(x0)g(x) au numérateur, et en réarrangeant l’expression obtenue,

f(x)g(x)− f(x0)g(x0)

x− x0

=
f(x)g(x)− f(x0)g(x) + f(x0)g(x)− f(x0)g(x0)

x− x0

=
f(x)− f(x0)

x− x0︸ ︷︷ ︸
→f ′(x0)

g(x)︸︷︷︸
→g(x0)

+f(x0)
g(x)− g(x0)

x− x0︸ ︷︷ ︸
→g′(x0)
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9.3. Règles de dérivation

Dans cette dernière ligne, on a utilisé le fait que f et g sont toutes deux dérivables en x0. On a également
utilisé le fait suivant : puisque g est dérivable en x0, elle est continue en ce point, et donc limx→x0 g(x) =

g(x0).

9.3.2 Composées et quotients

Rappelons que la composée de deux fonctions f et g, lorsqu’elle est bien définie, est donnée par
(f ◦ g)(x) := f(g(x)).

Proposition 11. Soit g dérivable au point x0, et f dérivable au point a = g(x0). Alors f ◦ g est dérivable
au point x0, et

(f ◦ g)′(x0) = f ′(g(x0))g
′(x0)

Preuve: Étudions

(f ◦ g)′(x0) = lim
h→0

(f(g(x0 + h))− f(g(x0))

h
.

⋆ Puisque g est dérivable en x0, il existe une fonction rx0 telle que

g(x0 + h) = g(x0)︸ ︷︷ ︸
=a

+(g′(x0) + rx0(h))h︸ ︷︷ ︸
=:H

.

Remarquons que H → 0 lorsque h→ 0.

⋆ Puis, comme f est dérivable en a, il existe une fonction r̃a(H) telle que

f(a+H) = f(a) + (f ′(a) + r̃a(H))H .

On a donc

f(g(x0 + h)) = f(a+H) = f(a) + (f ′(a) + r̃a(H))H

= f(g(x0)) + f ′(g(x0))H + r̃a(H)H ,

ce qui permet d’écrire

(f(g(x0 + h))− f(g(x0))

h
=
(
f ′(g(x0)) + r̃a(H)

)H
h

=
(
f ′(g(x0)) + r̃a(H)

)
(g′(x0) + rx0(h))

Mais lorsque h→ 0, r̃a(H) → 0 et rx0(h) → 0, et donc

lim
h→0

(f(g(x0 + h))− f(g(x0))

h
= f ′(g(x0))g

′(x0),

ce qu’on voulait démontrer.

Comme conséquence, on peut maintenant dériver d’autres types de fonctions, comme des quo-
tients :

Proposition 12. Soient f, g dérivables en x0. Si g(x0) ̸= 0, alors f
g

est dérivable en x0, et

(f
g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2
.
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9.4. Dérivées des fonctions élémentaires

Preuve: On commence par utiliser la règle de dérivation d’une composée pour dériver l’inverse de g en x0 :(1
g

)′
(x0) = − g′(x0)

g(x0)2
.

On voit ensuite le quotient comme un produit, on dérive ce produit, et on met tout le monde au même
dénominateur : (f

g

)′
(x0) =

(
f · 1

g

)′
(x0) = f ′(x0)

1

g(x0)
+ f(x0)

(1
g

)′
(x0)

= f ′(x0)
1

g(x0)
+ f(x0)

(−g′(x0)
g(x0)2

)
=
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2
.

On verra comment obtenir une formule pour (f(x)g(x))′ dans la section suivante.

9.4 Dérivées des fonctions élémentaires

(ici, Video: v_derivee_fondamentales.mp4)

Les règles de dérivation vues dans la section précédente permettent de calculer, en principe, la
dérivée de n’importe quelle fonction, tant que celle-ci est obtenue par combinaisons (sommes ou
différences, produits ou quotients, composées) d’autres fonctions plus simples que l’on sait déjà
dériver. Il est donc important de connaître les dérivées des fonctions élémentaires.

Ci-dessous, (. . . )′ indique la dérivation par rapport à la variable x.

Pour tout n ∈ N,
(xn)′ = nxn−1

Preuve: On démontre la formule par récurrence sur n. La formule est valide pour n = 1 et n = 2 (voir plus
haut). Si on suppose la formule valide pour n, alors par la règle de dérivation d’un produit,

(xn+1)′ = (x · xn)′ = 1 · xn + x · nxn−1 = (n+ 1)xn .

(sinx)′ = cosx .

Preuve: Montrons que

lim
h→0

sin(x0 + h)− sin(x0)

h
= cos(x0) .

En utilisant la formule de trigonométrie pour le sinus d’une somme,

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β) ,

on peut écrire

sin(x0 + h)− sin(x0)

h
=

(
sin(x0) cos(h) + cos(x0) sin(h)

)
− sin(x0)

h

= sin(x0)
cos(h)− 1

h︸ ︷︷ ︸
→0

+
sin(h)

h︸ ︷︷ ︸
→1

cos(x0)
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9.4. Dérivées des fonctions élémentaires

Dans la dernière ligne, on a fait

lim
h→0

cos(h)− 1

h
= lim

h→0
h
cos(h)− 1

h2
= 0 · (−1

2) = 0 .

(cosx)′ = − sinx .

Preuve: On utilise le fait que cos(x) = sin(π2 − x), et la formule pour la dérivée d’une composée :

(cos(x))′ = (sin(π2 − x))′

= cos(π2 − x) · (π2 − x)′

= sin(x) · (−1)

(tanx)′ = 1 + tan2 x =
1

cos(x)2
.

Preuve: Par la formule pour la dérivée d’un quotient,

(tan(x))′ =
( sin(x)
cos(x)

)′
=

cos(x)2 + sin(x)2

cos(x)2

(log x)′ =
1

x
, x > 0 .

Preuve: On calcule, pour tout x > 0,

(log(x))′ = lim
h→0

log(x+ h)− log(x)

h

= lim
h→0

log(x(1 + h
x))− log(x)

h

= lim
h→0

(log(x) + log(1 + h
x))− log(x)

h

= lim
h→0

log(1 + h
x)

h

=
1

x

{
lim
h→0

log(1 + h
x)

h
x

}
=

1

x

{
lim
t→0

log(1 + t)

t

}
=

1

x
.

Dans l’avant-dernière ligne, on a posé t = h
x , et utilisé le fait que si h → 0, alors t → 0. On a ensuite utilisé

limt→0
log(1+t)

t = 1, que nous avons étudiée ici (lien vers la section m_fonctions_limite_quelques_

limites).

(ex)′ = ex .

176 NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)

m_fonctions_limite_quelques_limites
m_fonctions_limite_quelques_limites
botafogo.saitis.net


9.4. Dérivées des fonctions élémentaires

Preuve:

(ex)′ = lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= ex
{
lim
h→0

eh − 1

h

}
= ex

Voir les commentaires sur blackpenredpen (lien web).

(ax)′ = log(a)ax .

Preuve: En exponentiant, a = elog(a),

(ax)′ = (ex log(a))′

= log(a)ex log(a)

= log(a)ax .

(loga(x))
′ =

1

x log(a)

Preuve: Par la formule du changement de base pour le logarithme,

(loga(x))
′ =

( log(x)
log(a)

)′
=

1

log(a)
(log(x))′ =

1

log(a)
· 1
x
.

Pour tout α ∈ R,
(xα)′ = αxα−1 , x > 0 .

Preuve: En exponentiant, x = elog(x) (x > 0),

(xα)′ = (eα log(x))′ = eα log(x)(α log(x))′ = xα
α

x
= αxα−1

Pour finir, étudions la dérivation des fonctions du type “f(x)g(x)”. Pour commencer, il faut noter
que de telles fonctions sont bien définies uniquement lorsque f(x) > 0. Dans ce cas, puisque
f(x) > 0, son logarithme est bien défini et on peut l’exponentier

f(x) = elog(f(x)) .

Ce qui motive la définition suivante :

f(x)g(x) := eg(x) log(f(x)) .

Si on veut dériver une telle fonction, on devra donc s’assurer que f(x) > 0 dans le voisinage du
point considéré. On pourra alors appliquer les règles de dérivation démontrées plus haut, ainsi
que les dérivées de l’exponentielle et du logarithme, pour calculer :

(eg(x) log(f(x)))′ = eg(x) log(f(x))(g(x) log(f(x)))′

=
(
g′(x) log(f(x) +

g(x)

f(x)
f ′(x))

)
eg(x) log(f(x))
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9.5. Dérivée d’une fonction réciproque

Exemple 9.15. Considérons, pour x > 0, la fonction

h(x) = xx .

Remarquons que h(x) n’est ni de la forme xα, ni de la forme ax, mais bien du type f(x)g(x), on doit
donc la considérer comme définie à l’aide d’une exponentiation :

h(x) := ex log(x) .

On la dérive alors sur R∗
+ en utilisant les règles de dérivation :

h′(x) = (ex log(x))′ = ex log x(x log x)′

= (log(x) + x 1
x
)ex log x

= (log(x) + 1)xx .

⋄

9.5 Dérivée d’une fonction réciproque

Théorème 9.16. Soit I = ]a, b[ un intervalle ouvert, et f : I → F une fonction bijective (en particulier,
F = Im(f)), dont la réciproque est notée f−1 : F → I . Soit encore x0 ∈ I . Si f est dérivable en x0 et si
f ′(x0) ̸= 0, alors f−1 est dérivable en y0 = f(x0), et

(f−1)′(y0) =
1

f ′(x0)
=

1

f ′(f−1(y0))
.

Avant de donner la preuve, donnons une explication graphique de la formule énoncée dans le
théorème :

(f−1)′(y0) =
1

f ′(f−1(y0))
.

Pour commencer, rappelons que le graphe de la fonction réciproque f−1 du graphe de f à tra-
vers la diagonale (pour ce rappel, voir ici (lien vers la section m_fonctions_generalites_
fonctions_reelles)) :

Or la réflexion d’une droite de pente m ̸= 0 à travers la diagonale est une droite de pente 1
m

. On
s’attend donc à ce que la dérivée de f−1 au point (y0, x0) soit égale à l’inverse de la dérivée de f
au point (x0, y0) :
Preuve: Pour étudier la dérivée de la réciproque f−1 au point y0 = f(x0), on considère le quotient est

f−1(y)− f−1(y0)

y − y0
.

178 NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)

m_fonctions_generalites_fonctions_reelles
m_fonctions_generalites_fonctions_reelles
botafogo.saitis.net


9.5. Dérivée d’une fonction réciproque

Comme f est bijective, on peut associer à tout y proche de y0 son unique préimage, x = f−1(y). Clairement,
y → y0 implique x→ x0. On peut donc récrire la limite

f−1(y)− f−1(y0)

y − y0
=

1
y−y0

f−1(y)−f−1(y0)

=
1

f(x)−f(x0)
x−x0

.

Puisque f ′(x0) ̸= 0, le dénominateur de cette dernière fraction est non nul dès que x est suffisamment
proche de x0, c’est-à-dire lorsque y est suffisamment proche de y0.

Maintenant, en prenant la limite,

lim
y→y0

f−1(y)− f−1(y0)

y − y0
= lim

x→x0

1
f(x)−f(x0)

x−x0

=
1

f ′(x0)

=
1

f ′(f−1(y0))
.

Informel 9.17. Pour se souvenir de la formule, on peut partir de la relation qui définit la fonction
réciproque

f(f−1(y)) = y ∀y ∈ F .

Puis, en supposant que la réciproque est dérivable, dériver par rapport à y des deux côtés. Du côté
gauche, on dérive une composée, donc

f ′(f−1(y))(f−1)′(y) = 1 .

On retrouve donc bien
(f−1)′(y) =

1

f ′(f−1(y))
.

Exemple 9.18. Supposons qu’on connaît (ex)′ = ex mais qu’on ne sait plus dériver log(x). Comme
elles sont réciproques l’une de l’autre, que f(x) = ex est dérivable partout et que sa dérivée n’est
jamais nulle, on a

elog(y) = y ,

que l’on dérive par rapport à y,
elog(y)︸ ︷︷ ︸

=y

(log(y))′ = 1

On retrouve alors :
(log(y))′ =

1

y
.

⋄

Dérivons maintenant les réciproques des fonctions trigonométriques.
Exemple 9.19. Rappelons que la réciproque du sinus est

arcsin : [−1, 1] → [−π
2
, π
2
]

x 7→ arcsin(x)

Par définition,
y = sin(arcsin(y)) ∀y ∈ [−1, 1]
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9.5. Dérivée d’une fonction réciproque

Puisque la dérivée du sinus ne s’annule nulle part sur ] − π
2
, π
2
[, le théorème garantit que arcsin

est dérivable sur ] − 1, 1[. En prenant la dérivée par rapport à y des deux côtés de cette dernière
identité : si y ∈]− 1, 1[,

1 =
(
sin(arcsin(y))

)′
= cos(arcsin(y))(arcsin(y))′ .

Comme l’angle arcsin(y) ∈]− π
2
, π
2
[, son cosinus est positif, et donc

cos(arcsin(y)) =
√

1− sin(arcsin(y))2 =
√
1− y2 .

On a donc

(arcsin(y))′ =
1√

1− y2
∀y ∈]− 1, 1[

⋄
Exemple 9.20. Rappelons que la réciproque du cosinus est

arccos : [−1, 1] → [0, π]

x 7→ arccos(x)

Par définition,
y = cos(arccos(y)) ∀y ∈ [−1, 1]

Puisque la dérivée du cosinus ne s’annule nulle part sur ]0, π[, le théorème garantit que arccos est
dérivable sur ] − 1, 1[. On calcule sa dérivée en prenant la dérivée par rapport à y des deux côtés
de cette dernière identité : si y ∈]− 1, 1[,

1 =
(
cos(arccos(y))

)′
= − sin(arccos(y))(arccos(y))′ .

Comme l’angle arccos(y) ∈]0, π[, son sinus est positif, et donc

sin(arccos(y)) =
√

1− cos(arccos(y))2 =
√

1− y2 .

On a donc

(arccos(y))′ =
−1√
1− y2

∀y ∈]− 1, 1[
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⋄
Exemple 9.21. Rappelons que la réciproque de la tangente est

arctan : R →]− π
2
, π
2
[

x 7→ arctan(x)

Par définition,
y = tan(arctan(y)) ∀y ∈ R

Comme la dérivée de la tangente ne s’annulle nulle part sur ]− π
2
, π
2
[, arctan est dérivable partout

sur R. En dérivant rapport à y des deux côtés de cette dernière identité,

1 =
(
tan(arctan(y))

)′
= (1 + tan2(arctan(y)))(arctan(y))′

= (1 + y2)(arctan(y))′ .

On a donc

(arctan(y))′ =
1

1 + y2
∀y ∈ R .

⋄

9.6 Dérivées latérales

Pour parler de la dérivabilité d’une fonction en un point x0, il faut que cette fonction soit définie
dans un voisinage épointé de x0. Ceci signifie en particulier que f doit être définie des deux côtés
de x0.

Si f n’est définie que d’un côté de x0, on peut tout de même introduire une notion de dérivée
latérale :
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9.6. Dérivées latérales

Définition 9.22. Soit x0 ∈ R.

⋆ Soit f définie en x0 et dans un voisinage à gauche. On dit que f est dérivable à gauche en
x0 si le nombre f ′

−(x0) défini par la limite

f ′
−(x0) = lim

x→x−0

f(x)− f(x0)

x− x0

existe (et est fini). On appelle f ′
−(x0) la dérivée à gauche en x0.

⋆ Soit f définie en x0 et dans un voisinage à droite. On dit que f est dérivable à droite en x0
si le nombre f ′

+(x0) défini par la limite

f ′
+(x0) = lim

x→x+0

f(x)− f(x0)

x− x0

existe (et est fini). On appelle f ′
+(x0) la dérivée à droite en x0.

Observons que la dérivabilité à gauche (resp. à droite) en x0 implique qu’il existe une droite
tangente à gauche (resp. à droite) au point (x0, f(x0)).

Il peut donc exister des fonctions qui peuvent être dérivables à gauche ou à droite en un point,
mais sans être dérivable en ce point.
Exemple 9.23. On sait que f(x) = |x| n’est pas dérivable en x0 = 0 :

Pourtant, ses dérivées latérales existent en 0, puisque

f ′
±(0) = lim

x→0±

|x| − |0|
x− 0

= lim
x→0±

±x
x

= ±1 .

⋄

L’existence et l’égalité des dérivées latérales en un point entraîne la dérivabilité en ce point :

Théorème 9.24. f est dérivable en x0 si et seulement si f ′
−(x0) et f ′

+(x0) existent et sont égales (et dans
ce cas, f ′(x0) = f ′

−(x0) = f ′
+(x0)).

182 NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)

botafogo.saitis.net


9.6. Dérivées latérales

Preuve: Par définition,

f ′−(x0) = lim
x→x−0

f(x)− f(x0)

x− x0
,

f ′+(x0) = lim
x→x−0

f(x)− f(x0)

x− x0
.

Donc ces deux limites existent et sont égales si et seulement si

lim
x→x0

f(x)− f(x0)

x− x0

existe et prend la même valeur.

Informel 9.25. Donc si les dérivées latérales existent et sont égales, la fonction est dérivable (image
de gauche ci-dessous), et si les dérivées latérales existent toutes les deux mais que leurs valeurs
sont différentes, alors la fonction n’est pas dérivable, et son graphe fait un “coude” au point x0
(image de droite ci-dessous) :

9.6.1 Fonctions définies par morceaux

Soient f, g deux fonctions définies sur toute la droite, et x∗ ∈ R. Considérons la fonction f sui-
vante, définie par morceaux :

f(x) :=

{
g(x) si x ⩽ x∗ ,

h(x) si x > x∗ .

Si f est continue en x∗, on pourra tester la dérivabilité de f en x∗, par le théorème précédent, en
calculant les dérivées latérales de f en x∗, et en vérifiant qu’elle sont égales.
Exemple 9.26. Étudions la dérivabilité de

f(x) =

{
g(x) = 3− x2 si x ⩽ 1 ,

h(x) = x3 − 3x2 + 4 si x > 1

au point x∗ = 1. Remarquons que f est continue en ce point puisque

lim
x→1−

f(x) = lim
x→1−

g(x) = 2 = lim
x→1+

h(x) = lim
x→1+

f(x) ,

qui est également égale à f(1) = 2.

Pour tester la dérivabilité,

f ′
−(1) = lim

x→1−

f(x)− f(1)

x− 1

= lim
x→1−

g(x)− g(1)

x− 1

= lim
x→1−

(3− x2)− 2

x− 1
= −2
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f ′
+(1) = lim

x→1+

f(x)− f(1)

x− 1

= lim
x→1+

h(x)− g(1)

x− 1

= lim
x→1+

(x3 − 3x2 + 4)− 2

x− 1
= −3

Comme f ′
−(1) ̸= f ′

+(1), f n’est pas dérivable en 1.

⋄
Exemple 9.27. Soit

f(x) :=

{
x2 + ax+ 1 si x < 0 ,

sin(2x) + b si x ⩾ 0 .

Remarquons qu’en dehors de 0, f est partout dérivable, quelles que soient les valeurs de a et b.
Déterminons les paramètres a, b de manière à ce que f soit dérivable en x0 = 0.

Pour être dérivable en 0, il faut d’abord que f soit continue en 0. Commençons donc par assurer
que f est continue en 0. Pour cela, remarquons que f(0) = sin(2 · 0) + b = b,

lim
x→0+

f(x) = lim
x→0+

(sin(2x) + b) = b ,

et
lim
x→0−

f(x) = lim
x→0−

(x2 + ax+ 1) = 1 .

Pour avoir la continuité en 0, on doit donc imposer b = 1.

Passons à la dérivabilité en 0. Puisqu’on peut dorénavant considérer que b = 1, on calcule d’abord

f ′
−(0) = lim

h→0−

f(h)− f(0)

h

= lim
h→0−

(h2 + ah+ 1)− 1

h

= lim
h→0−

(a+ h) = a ,

puis

f ′
+(0) = lim

h→0+

f(h)− f(0)

h

= lim
h→0+

(sin(2h) + 1)− 1

h
lim
h→0+

sin(2h)

h
= 2 .

Comme f est dérivable en 0 si et seulement si f ′
−(0) = f ′

+(0), la seule possibilité est d’imposer
a = 2. ⋄
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9.7. Dérivées d’ordres supérieurs

9.7 Dérivées d’ordres supérieurs

On verra, plus tard, que les dérivées d’ordre supérieur d’une fonction jouent un rôle important
dans l’analyse fine de cette fonction au voisinage d’un point (voir en particulier la Formule de
Taylor).

Soit f : I → R, dérivable en chaque point de l’intervalle ouvert I . On note sa dérivée, qui est la
première dérivée,

f (1) := f ′ .

Ensuite, si f (1) : I → R est elle-même dérivable, on dit que f est deux fois dérivable sur I , et on
note sa deuxième dérivée comme suit :

f (2) := (f (1))′ .

Aussi, pour k ⩾ 2, si la (k − 1)-ème dérivée f (k−1) : I → R existe et est dérivable sur I , on dit que
f est k fois dérivable sur I , et on note sa k-ème dérivée comme suit :

f (k) := (f (k−1))′ .

Remarquons que si f (k) existe, cela entraîne que f (k−1) est dérivable, et donc en particulier conti-
nue.
Exemple 9.28. Si f(x) = xm, alors

f ′(x) = mxm−1

f (2)(x) = m(m− 1)xm−2

f (3)(x) = m(m− 1)(m− 2)xm−3

...

f (m)(x) = m(m− 1)(m− 2) · · · 3 · 2 · 1 = m! .

Puisque f (m) est une fonction constante, les dérivées d’ordre supérieur à m sont toutes nulles :
pour tout k > m,

f (k)(x) = 0 ∀x ∈ R .
⋄

Exemple 9.29. Si f(x) = sin(ωx), où ω est une constante. On a

f ′(x) = ω cos(ωx)

f (2)(x) = −ω2 sin(ωx)

f (3)(x) = −ω3 cos(ωx)

...
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On peut écrire explicitement la k-ème dérivée, comme une fonction de k. En effet, en utilisant les
relations

sin(z + π
2
) = cos(z) ,

sin(z + π) = − sin(z) ,

on a
f (k)(x) = ωk sin(ωx+ k π

2
) .

⋄
Remarque 9.30. On ne peut pas toujours exprimer une grande dérivée aussi explicitement en
fonction de k ! ⋄

9.8 Fonctions continûment dérivables

(ici, Video: v_derivee_C1.mp4)

Soit I ⊂ R un intervalle ouvert.

Un premier niveau de régularité que l’on a rencontré, pour une fonction f : I → R, est celui de
continuité. Ensuite, on a vu que la dérivabilité est un niveau de régularité plus fort (dans le sens où
toute fonction dérivable est continue).

Il est naturel d’introduire un niveau de régularité encore supérieur, plus fort que la dérivabilité,
en exigeant que la dérivée soit elle-même continue :

Définition 9.31. Soit f : I → R, dérivable en tout point de I . Si f ′ : I → R est continue, on
dit que f est continûment dérivable sur I . On note C1(I) l’ensemble des fonctions continûment
dérivables sur I .

Exemple 9.32. Sur I = R, considérons f(x) = x2 sin(x). Puisque f est un produit d’un polynôme
(dérivable) par un sinus (dérivable aussi), elle est dérivable. De plus,

f ′(x) = 2x sin(x) + x2 cos(x) .

Comme f ′ est une combinaison linéaire de produits de polynômes par des sinus et cosinus, elle
est elle-même continue. On en déduit que f est continûment dérivable sur R : f ∈ C1(R). ⋄
Exemple 9.33. Sur ]0, 1[, considérons f(x) = 1

x
. Alors f est dérivable sur ]0, 1[ et sa dérivée est

donnée par

f ′(x) = − 1

x2
.

Comme f ′ est aussi continue sur ]0, 1[, ceci implique que f est continûment dérivable sur ]0, 1[ :
f ∈ C1(]0, 1[). ⋄

Les polynômes, les fonctions trigonométriques, etc. sont des fonctions continûment dérivables
sur leur ensemble de définition.

Bien-sûr, une fonction qui n’est pas dérivable en un point n’est pas continûment dérivable. Mais
il est aussi possible qu’une fonction soit dérivable partout, sans être continûment dérivable :
Exemple 9.34. Soit

f(x) =


x

2
+
x2

5
sin

(
1

x

)
si x ̸= 0

0 si x = 0 .
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On remarque que f est continue en tout point, en particulier en 0 puisque

lim
x→0

f(x) = 0 = f(0) .

Ensuite, f est dérivable en tout point x ̸= 0. Sur R∗, sa dérivée se calcule à l’aide des règles de
dérivation :

f ′(x) =
(x
2
+
x2

5
sin

(
1

x

))′
=

1

2
+

2x

5
sin

(
1

x

)
− 1

5
cos

(
1

x

)
.

Ensuite, f est aussi dérivable en 0, puisque

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

= lim
x→0

x

2
+
x2

5
sin(

1

x
)− 0

x

= lim
x→0

(
1

2
+
x

5
sin

(
1

x

))
=

1

2
.

Donc f est dérivable sur tout R.

Testons maintenant la continuité de f ′. Clairement, f ′ est continue sur R∗, puisque par l’expression
ci-dessus ce n’est qu’une combinaison de fonctions continues :

f ′(x) =
1

2
+

2x

5
sin

(
1

x

)
− 1

5
cos

(
1

x

)
.

Pourtant, on remarque que lorsque x → 0, f ′(x) n’a pas de limite, ce qui est dû à la présence de
1
5
cos( 1

x
). Ce terme n’ayant pas de limite en 0, f ′ n’est pas continue en 0. Ceci fait de f une fonction

qui est dérivable sur R, mais pas continûment dérivable. ⋄

9.8.1 Fonctions k fois continûment dérivables
Définition 9.35. Ck(I) désigne l’ensemble des fonctions f : I → R, k fois dérivables, telles que
f (1), . . . , f (k) existent et sont continues sur I . On dit qu’une telle fonction est de classe Ck (sur I).

Informel 9.36. Plus l’indice k est grand, plus une fonction f ∈ Ck est régulière.

Remarquons que si f est k + 1 fois dérivable sur I , alors elle est de classe Ck. On a donc les
inclusions suivantes :

C1(I) ⊃ C2(I) ⊃ · · · ⊃ Ck(I) ⊃ Ck+1(I) ⊃ · · ·
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Exemple 9.37. Considérons f : R → R définie par f(x) = ex. Alors

f (1)(x) = f (2)(x) = f (3)(x) = · · · = f (k)(x) = · · · = ex ,

donc f ∈ Ck(R) pour tout k ⩾ 1. ⋄

Exemple 9.38. Considérons f : R → R définie par

f(x) =

{
+x2 si x ⩾ 0 ,

−x2 si x < 0 .

Montrons que f ∈ C1(R). D’abord, f est clairement dérivable en tout point x0. En effet, si x > 0
alors f ′(x) = (x2)′ = 2x, et si x < 0 alors f ′(x) = (−x2)′ = −2x. Il faut maintenant considérer
x0 = 0. Par un calcul direct,

f ′
+(0) = lim

h→0+

f(h)− f(0)

h
= lim

h→0+

+h2

h
= 0 ,

f ′
−(0) = lim

h→0−

f(h)− f(0)

h
= lim

h→0−

−h2

h
= 0 .

Donc f ′(0) = 0. Ainsi, f est dérivable partout, et on peut écrire sa dérivée

f ′(x) =


+2x si x > 0 ,

0 si x = 0 ,

−2x si x < 0 .

Plus simplement :

f ′(x) = 2|x| ∀x ∈ R .

Puisque x 7→ |x| est continue sur R, on en déduit que f ′ est continue sur R, ce qui implique que
f ∈ C1(R). Mais comme f ′ n’est pas dérivable en 0, on a aussi que f /∈ C2(R). ⋄
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9.9 Extréma locaux et le Théorème de Rolle

On a défini ici (lien vers la section m_fonctions_maximum_minimum_supremum_infimum)
la notion de maximum/minimum global pour une fonction réelle f : D → R.

Définition 9.39. Soit f définie en x0 et dans son voisinage. On dit que

⋆ f possède un maximum local en x0 si il existe δ > 0 tel que

f(x) ⩽ f(x0) ∀x ∈]x0 − δ, x0 + δ[ .

⋆ f possède un minimum local en x0 si il existe δ > 0 tel que

f(x) ⩾ f(x0) ∀x ∈]x0 − δ, x0 + δ[ .

Bien-sûr, un maximum/minimum global est aussi local.

Le point de départ de cette section est le résultat suivant. Il suggère que la dérivée peut s’avérer
être un outil pour la recherche de minimums/maximums :

Lemme 24. Soit f définie en x0 et dans son voisinage. Si f possède un minimum/maximum local en x0, et
si f est dérivable en x0, alors

f ′(x0) = 0 .

Preuve: Supposons que f possède un maximum local en x0 : ∃δ > 0 tel que f(x) ⩽ f(x0) pour tout
x ∈ I :=]x0 − δ, x0 + δ[.
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⋆ Si x ∈ I , x > x0, on a toujours f(x) − f(x0) ⩽ 0 puisque x0 est un maximum local, et donc aussi
(puisque x− x0 > 0)

f(x)− f(x0)

x− x0
⩽ 0

En prenant x→ x+0 , cela donne

f ′(x0) = lim
x→x+0

f(x)− f(x0)

x− x0
⩽ 0 .

⋆ En procédant de même pour un x < x0, on

f(x)− f(x0)

x− x0
⩾ 0 ,

et donc en prenant x→ x−0 , on montre que f ′(x0) ⩾ 0.

Puisque f est dérivable en x0, on doit avoir f ′(x0) = f ′+(x0) = f ′−(x0), et puisque ce nombre est à la fois
⩽ 0 et ⩾ 0, on a f ′(x0) = 0.

L’affirmation réciproque n’est pas vraie : si f est dérivable en x0 et si f ′(x0) = 0, cela n’implique
pas que f possède un minimum ou un maximum local en x0 !
Exemple 9.40. Prendre par exemple f(x) = x3 au point x0 = 0 :

Comme f ′(x) = 3x2, on a f ′(0) = 0, bien que 0 ne soit ni un minimum ni un maximum local. ⋄

Théorème 9.41 (Théorème de Rolle). Soit f : [a, b] → R continue, dérivable sur ]a, b[. Si f(a) = f(b),
alors il existe c ∈]a, b[ tel que

f ′(c) = 0 .

Preuve: Si f est constante, f(a) = f(x) = f(b) pour tout x ∈]a, b[, sa dérivée est nulle et donc on peut
prendre n’importe quel point c ∈]a, b[, et avoir f ′(c) = 0.

Supposons donc que f n’est pas constante. Comme f est continue sur l’intervalle compacte [a, b], elle atteint
son maximum en un point x∗ ∈ [a, b], et son minimum en un point x∗ ∈ [a, b]. Comme f n’est pas constante,
au moins un de ces points se trouve strictement à l’intérieur de l’intervalle. Supposons que c’est x∗ ∈]a, b[.
Comme x∗ est un maximum global, c’est aussi un maximum local, et par le lemme précédent f ′(x∗) = 0.

L’interprétation géométrique du Théorème de Rolle est claire : si le graphe d’une fonction lisse
(continue et dérivable) part d’un point A = (a, f(a)) et arrive en un point B = (b, f(b)) qui est à
la même hauteur que A, alors il existe au moins un point de son graphe où la droite tangente est
horizontale :
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Exemple 9.42. Soit f : [0, 1] → R, définie par

f(x) := sin(πx2) cos(x) .

Comme f est continue et dérivable, et comme f(0) = f(1) = 0, il existe c ∈]0, 1[ tel que f ′(c) = 0.

Dans ce cas, c est solution de l’équation non-linéaire

2πc cos(πc2) cos(c)− sin(πc2) sin(c) = 0 ,

et ne peut pas être donné explicitement. ⋄

Parfois, le point c peut se calculer explicitement :
Exemple 9.43. Soit f : [−1, 0] → R définie par

f(x) := x4 + x .

On a f(−1) = f(0) = 0, et donc par le Théorème de Rolle il existe c ∈]− 1, 0[ tel que f ′(c) = 0.

De plus, comme f ′(x) = 4x3 + 1, on a

f ′(c) = 0 ⇐⇒ 4c3 + 1 = 0 ⇐⇒ c = − 3

√
1

4
.

⋄

Bien-sûr, si une des conditions du théorème n’est pas vérifiée, la conclusion du théorème n’est
plus garantie (en général).
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Exemple 9.44. Soit f : [0, 2] → R, définie par

f(x) := |x− 1| .

Ici f(0) = f(2) = 1, mais il n’existe aucun c ∈]0, 2[ tel que f ′(c) = 0.

Ce n’est pas une contradiction avec le Théorème de Rolle, puisque f ne satisfait pas aux hypo-
thèses : elle est continue sur [0, 2], dérivable en tout point de ]0, 2[ sauf en x = 1. ⋄

9.10 Le Théorème des accroissements finis

Le résultat suivant, appelé Théorème des Accroissements Finis (parfois abbrégé “TAF” par la
suite), est une généralisation du Théorème de Rolle :

Théorème 9.45. Soit f continue sur [a, b], dérivable sur ]a, b[ . Alors il existe c ∈]a, b[ tel que

f ′(c) =
f(b)− f(a)

b− a
.

Preuve: Définissons

g(x) := f(x)− f(a)− f(b)− f(a)

b− a
(x− a) .

Cette fonction est continue sur [a, b], dérivable sur ]a, b[, et g(a) = g(b) = 0. Par le Théorème de Rolle, il
existe c ∈]a, b[ tel que g′(c) = 0. Or

g′(x) = f ′(x)− f(b)− f(a)

b− a
,

donc g′(c) = 0 est équivalent à f ′(c) = f(b)−f(a)
b−a .

Le quotient
f(b)− f(a)

b− a

représente la pente du segment qui relie le point A = (a, f(a)) au point B = (b, f(b)). Donc
l’interprétation géométrique du théorème des accroissements finis est la suivante : si le graphe
d’une fonction lisse part d’un point A et arrive à un point B, il doit exister au moins un point de
son graphe où la droite tangente est parallèle au segment AB :
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9.10.1 Conséquence 1 : Variation de f et signe de f ′

(ici, Video: v_derivee_vs_variation.mp4)

Proposition 13. Soit f : [a, b] → R, continue, dérivable sur ]a, b[. Alors

1) f est croissante sur [a, b]⇔ f ′(x) ⩾ 0 pour tout x ∈]a, b[.
2) f est décroissante sur [a, b]⇔ f ′(x) ⩽ 0 pour tout x ∈]a, b[.

Preuve: Supposons que f est croissante sur [a, b]. Considérons un point x ∈]a, b[ quelconque. Comme f est
dérivable en x, sa dérivée est égale à sa dérivée latérale à droite :

f ′(x) = f ′+(x) = lim
z→x+

f(z)− f(x)

z − x
.

Ce dernier quotient peut donc être considéré pour des z > x, ce qui implique que le dénominateur z−x > 0,
et que le numérateur f(z)− f(x) ⩾ 0 (puisque f est supposée croissante). Donc le quotient est ⩾ 0, et donc
sa limite est aussi positive : f ′(x) ⩾ 0.

Supposons maintenant que f ′(x) ⩾ 0 pour tout x ∈ [a, b]. Soient x1, x2 ∈ [a, b], x1 < x2. On peut appliquer
le TAF sur [x1, x2] : il existe c ∈]x1, x2[ tel que

f(x2)− f(x1)

x2 − x1
= f ′(c) ⩾ 0 .

Comme x2 − x1 > 0, ceci implique f(x2) ⩾ f(x1). Puisque ceci vaut pour toute paire x1, x2 (avec x1 < x2),
on a bien montré que f est croissante sur [a, b].

Remarque 9.46. On peut également montrer, sous les mêmes hypothèses du théorème, que

1) f ′(x) > 0 pour tout x ∈]a, b[⇒ f est strictement croissante sur [a, b]

2) f ′(x) < 0 pour tout x ∈]a, b[⇒ f est strictement décroissante sur [a, b]

Mais les réciproques de ces affirmations ne sont pas vraies ! En effet, la fonction f(x) = x3 est
strictement croissante, mais sa dérivée s’annule en 0. ⋄

Par la proposition ci-dessus, on peut étudier la variation d’une fonction dérivable, c’est-à-dire
trouver les intervalles sur lesquels elle est croissante ou décroissante, simplement en étudiant le
signe de sa dérivée.
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Exemple 9.47. Considérons f(x) = x
1+x2

, définie et dérivable sur tout R. On a

f ′(x) =

(
x

1 + x2

)′

=
1 + x2 − x(2x)

(1 + x2)2
=

1− x2

(1 + x2)2
.

Le signe de f ′ permet ainsi de déterminer les intervalles sur lesquels f est croissante ou décrois-
sante :

En plus du fait que f(x) → 0 lorsque x→ ±∞, ces informations permettent déjà de produire une
esquisse raisonnable du graphe :

⋄

La proposition ci-dessus peut aussi s’utiliser pour démontrer des inégalités “universelles” entre
fonctions :

Exemple 9.48. Montrons que

ex ⩾ 1 + x ∀x ∈ R .

Si on pose f(x) := ex − (1 + x), il s’agit donc de montrer que f(x) ⩾ 0 pour tout x ∈ R. Or

f ′(x) = ex − 1

{
⩽ 0 si x ⩽ 0 ,

⩾ 0 si x ⩾ 0 ,

On conclut par la proposition que

⋆ f est décroissante sur ]−∞, 0], et donc f(x) ⩾ f(0) pour tout x ⩽ 0,

⋆ f est croissante sur [0,+∞[, et donc f(0) ⩽ f(x) pour tout x ⩾ 0,

Dans tous les cas, f(x) ⩾ f(0) = 0, ce qui démontre l’inégalité voulue.

On remarque que y = 1 + x est l’équation de la droite tangente au graphe de f(x) = ex au point
(0, 1). On a donc en démontré que le graphe de f est toujours au-dessus de sa droite tangente :
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⋄
Exemple 9.49. On peut également montrer que

cos(x) ⩾ 1− x2

2
∀x ∈ R .

⋄

9.10.2 Conséquence 2 : Les fonctions de dérivée nulle sont des constantes

Lemme 25. Soit f :]a, b[→ R dérivable en tout point de ]a, b[. Si f ′(x) = 0 pour tout x ∈]a, b[, alors f est
constante.

Preuve: On montre que f est constante en montrant qu’elle prend, en tout point x de l’intervalle, la même
valeur qu’en un point x0 fixé. Fixons donc x0 ∈]a, b[.

Prenons un autre point x ∈]a, b[. Supposons que x > x0. Puisque f est dérivable sur ]a, b[, elle satisfait aux
hypothèses du TAF sur [x0, x] : il existe un point c ∈]x0, x[ tel que

f(x)− f(x0)

x− x0
= f ′(c) .

Mais comme f ′(c) = 0, ceci implique que f(x) = f(x0).

Si x < x0, on fait la même chose sur [x, x0].

Remarque 9.50. Dans le lemme précédent, il est essentiel que le domaine de la fonction soit un
intervalle, pas juste un ouvert ! En effet, on peut très bien avoir une fonction définie sur un domaine
qui est une union de deux intervalles ouverts, par exemple D =]0, 1[∪]2, 3[, dont la dérivée est
nulle partout, mais qui n’est pas constante :

⋄
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Comme conséquence du lemme, un résultat que l’on utilisera plus tard dans le chapitre sur l’in-
tégration :

Corollaire 10. Soient f, g : [a, b] → R continues et dérivables sur ]a, b[. Si

f ′(x) = g′(x) ∀x ∈]a, b[ ,

alors il existe une constante C telle que

f(x) = g(x) + C ∀x ∈]a, b[ .

Preuve: Soit h(x) := f(x)− g(x). Puisque

h′(x) = f ′(x)− g′(x) = 0 ∀x ∈]a, b[ ,

le lemme précédent garantit qu’il existe une constante C telle que h(x) = C, et donc f(x) = g(x) +C, pour
tout x ∈ [a, b].

9.10.3 Conséquence 3 : Dérivées latérales et limites de la dérivée

Proposition 14. Soit f : [a, b] → R continue, dérivable sur ]a, b[.

1) Si lim
x→a+

f ′(x) existe et est finie, alors f est dérivable à droite en x = a, et

f ′
+(a) = lim

x→a+
f ′(x) .

2) Si lim
x→b−

f ′(x) existe et est finie, alors f est dérivable à gauche en x = b, et

f ′
−(b) = lim

x→b−
f ′(x) .

Preuve: Pour démontrer la première affirmation, calculons la dérivée à droite en a :

f ′+(a) = lim
z→a+

f(z)− f(a)

z − a
.

Appliquons le TAF sur [a, z] : il existe cz ∈]a, z[ tel que

f(z)− f(a)

z − a
= f ′(cz) .

Or cz → a+ lorsque z → a+, et donc

lim
z→a+

f(z)− f(a)

z − a
= lim

z→a+
f ′(cz) = lim

c→a+
f ′(c) ,

ce qu’on voulait démontrer.

Cette dernière proposition est utile pour tester la dérivabilité d’une fonction définie par morceaux,
au point de raccordement. En effet, soient g et h des fonctions dérivables, et soit

f(x) :=

{
g(x) si x ⩽ x∗ ,

h(x) si x > x∗ .
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Supposons que f est continue en x∗ (ce qui, ici, signifie que g(x∗) = limx→x+∗
h(x)). Pour vérifier si

f est aussi dérivable en x∗, on n’a a priori pas d’autre option que de calculer ses dérivées latérales
en x∗,

f ′
−(x∗) = lim

x→x−∗

g(x)− g(x∗)

x− x∗
= g′−(x∗) ,

f ′
+(x∗) = lim

x→x+∗

h(x)− g(x∗)

x− x∗
,

et de voir si elles sont égales : f ′
−(x∗)

?
= f ′

+(x∗). Mais, puisque g (resp. h) est dérivable en tout
x < x∗ (resp. x > x∗) proche de x∗, on peut éviter de passer par les dérivées latérales.

En effet, la proposition précédente garantit que f ′
−(x∗) = f ′

+(x∗) si

lim
x→x−∗

f ′(x) = lim
x→x+∗

f ′(x) ,

c’est-à-dire si
lim
x→x−∗

g′(x) = lim
x→x+∗

h′(x) .

Exemple 9.51. Considérons la fonction suivante, déjà rencontrée plus haut,

f(x) :=

{
x2 + ax+ 1 si x ⩽ 0 ,

sin(2x) + b si x > 0 ,

et reposons la question : Est-il possible de choisir a et b de façon à ce que f soit dérivable en 0?

On a vu que la continuité en 0 est garantie en imposant b = 1. Par la remarque ci-dessus, on peut
garantir la dérivabilité en 0 en imposant

lim
x→0−

(
x2 + ax+ 1

)′
= lim

x→0+
(sin(2x) + b)′ ,

c’est-à-dire
lim
x→0−

(
2x+ a

)
= lim

x→0+
2 cos(2x) ,

ce qui donne a = 2. ⋄
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9.10.4 Une généralisation du Théorème des accroissements finis

Le Théorème de Rolle permet en fait de démontrer un résultat plus général que le Théorème des
accroissements finis :

Théorème 9.52. (Théorème des Accroissements Finis généralisé (abbrégé “TAFG”) par la suite) Soient
f, g continues sur [a, b], dérivables sur ]a, b[. Si g(a) ̸= g(b), alors il existe c ∈]a, b[ tel que

f ′(c) =
f(b)− f(a)

g(b)− g(a)
g′(c) .

Preuve: Puisqu’on suppose que g(b)− g(a) ̸= 0, on peut définir

r(x) := f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)) .

Par les propriétés de fet g sur [a, b], r est continue sur [a, b], dérivable sur ]a, b[, avec

r′(x) = f ′(x)− f(b)− f(a)

g(b)− g(a)
g′(x) .

De plus, on observe que r(a) = r(b) = 0. Donc, par le Théorème de Rolle, il existe c ∈]a, b[ tel que r′(c) =
0.

Remarque 9.53. En prenant g(x) = x, on voit que le TAF est un cas particulier du TAFG. ⋄

9.11 La règle de Bernoulli-l’Hôpital

(ici, Video: v_derivee_BH.mp4)

Nous allons voir maintenant un outil puissant qui, lorsqu’il est bien utilisé, permet d’étudier des
indéterminations qu’aucune des méthodes présentées jusqu’ici ne permettait d’aborder.

Malgré tout, cet outil a un prix : il ne s’applique que dans certaines situations très particulières
(voir les hypothèses ci-dessous), et sa justification est délicate.
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Théorème 9.54. (Règle de Bernoulli-l’Hôpital) Soient f, g :]a, b[→ R dérivables , telles que

1) g(x) ̸= 0 et g′(x) ̸= 0 pour tout x ∈]a, b[,
2) la limite

lim
x→a+

f(x)

g(x)

est une indétermination du type “0
0
” ou “±∞

±∞”, c’est-à-dire que

lim
x→a+

f(x) = lim
x→a+

g(x) = L ,

où L ∈ {0,+∞,−∞}.

Si
lim
x→a+

f ′(x)

g′(x)
= R ,

où R est soit un réel, soit +∞, soit −∞, alors

lim
x→a+

f(x)

g(x)
= R .

Le résultat ci-dessus reste valable si on remplace partout

⋆ la limite x→ a+ par x→ b−, ou alors

⋆ ]a, b[ par ]a,+∞[ et la limite x→ a+ par x→ +∞, ou alors

⋆ ]a, b[ par ]−∞, b[ et la limite x→ a+ par x→ −∞.

Preuve:
Commençons par traiter le cas où L = 0 et R ∈ R.

Fixons un x ∈]a, b[ (que l’on fera ensuite → a+).

Comme limx→a+ f(x) = limx→a+ g(x) = L = 0, on peut prolonger f et g par continuité à [a, x], en posant
f(a) := 0, g(a) := 0. Comme maintenant f et g sont continues sur [a, x] et dérivables sur ]a, x[, on peut
utiliser la généralisation du Théorème des accroissements finis (fin de la section précédente), pour garantir
l’existence d’un point cx ∈]a, x[ tel que

f ′(cx) =
f(x)− f(a)

g(x)− g(a)
g′(cx) .

Ceci nous permet de récrire le quotient (puisque ni g ni g′ ne s’annulent dans ]a, b[) :

f(x)

g(x)
=
f(x)− 0

g(x)− 0
=
f(x)− f(a)

g(x)− g(a)
=
f ′(cx)

g′(cx)

Maintenant, prenons la limite x→ a+. Comme a < cx < x, on a cx → a+ lorsque x→ a+, et donc

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(cx)

g′(cx)
= lim

x→a+

f ′(x)

g′(x)
= R .
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Passons maintenant au cas où L = +∞ et R ∈ R.

On a donc limx→a+ f(x) = +∞, limx→a+ g(x) = +∞, et la limite

lim
x→a+

f ′(x)

g′(x)
= R

est finie.

En préparation, fixons a < x < x0 < b et écrivons∣∣∣f(x)
g(x)

−R
∣∣∣ ⩽ ∣∣∣f(x)

g(x)
− f(x)− f(x0)

g(x)− g(x0)

∣∣∣+ ∣∣∣f(x)− f(x0)

g(x)− g(x0)
−R

∣∣∣
⩽
∣∣∣f(x)
g(x)

∣∣∣ · ∣∣∣1− 1− f(x0)
f(x)

1− g(x0)
g(x)

∣∣∣︸ ︷︷ ︸
=:φx0 (x)

+
∣∣∣f(x)− f(x0)

g(x)− g(x0)
−R

∣∣∣︸ ︷︷ ︸
=:ψx0 (x)

Maintenant, ∣∣∣f(x)
g(x)

−R
∣∣∣ ⩽ ∣∣∣f(x)

g(x)

∣∣∣φx0(x) + ψx0(x)

⩽
∣∣∣f(x)
g(x)

−R
∣∣∣φx0(x) + |R|φx0(x) + ψx0(x) ,

et on peut isoler
∣∣∣f(x)g(x) −R

∣∣∣ dans cette dernière inégalité :

∣∣∣f(x)
g(x)

−R
∣∣∣ ⩽ |R|φx0(x) + ψx0(x)

1− φx0(x)
.

Voyons maintenant comment le côté droit peut être rendu arbitrairement petit en prenant x et x0 suffisam-
ment proches de a. D’abord, appliquons le TAFG sur [x, x0] : il existe cx,x0 ∈]x, x0[ tel que

ψx0(x) =
∣∣∣f(x)− f(x0)

g(x)− g(x0)
−R

∣∣∣ = ∣∣∣f ′(cx,x0)
g′(cx,x0)

−R
∣∣∣ .

Par hypothèse, f
′(x)
g′(x) → R. Donc en fixant ε > 0, on peut prendre un x0 > a suffisamment proche de a,

de façon à ce que pour tout a < x < x0, 0 ⩽ ψx0(x) ⩽ ε. Ensuite, remarquons qu’à x0 fixé, on a toujours
limx→a+ φx0(x) = 0. On a donc

lim
x→a+

∣∣∣f(x)
g(x)

−R
∣∣∣ ⩽ ε .
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Comme ε > 0 est arbitraire, on a bien montré que

lim
x→a+

f(x)

g(x)
= R ,

ce qu’on voulait démontrer.

La règle de BH, si elle s’applique de part et d’autre d’un point a, permet évidemment de calculer
des limites x→ a :
Exemple 9.55. Étudions la limite

lim
x→0

sin(x)− x

x3

Clairement, f(x) = sin(x) − x et g(x) = x3 satisfont aux hypothèses du théorème : toutes deux
sont dérivables dans un voisinage de x = 0, ni g ni g′ ne s’annulent dans un voisinage épointé de
x = 0, et toutes deux tendent vers zéro lorsque x→ 0. On peut alors étudier la limite du quotient
des dérivées :

lim
x→0

f ′(x)

g′(x)
= lim

x→0

cos(x)− 1

3x2
= −1

6

Comme cette limite existe et est finie, on peut conclure par le théorème que

lim
x→0

sin(x)− x

x3
= lim

x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= −1

6
.

⋄

Informel 9.56. On n’utilise surtout pas la règle de BH pour calculer des limites fondamentales,
telles que

lim
x→0

sin(x)

x
= 1 !!!

En effet si on voulait utiliser BH pour cette limite, on devrait dériver le sinus : (sin(x))′ = cos(x).
Or si on relit la preuve de comment on montre que la dérivée du sinus c’est le cosinus, on se rend
compte qu’elle repose sur la connaissance de ... limx→0

sin(x)
x

!

Donc la limite “limx→0
sin(x)
x

= 1” doit être considérée comme fondamentale, calculée uniquement
à partir de la définition de base du sinus, dans le cercle trigonométrique.

Même si elle est formulée pour des indéterminations qui concernent des quotients, la règle de
BH permet en fait de calculer des indéterminations de tous les types. Ceci se fait en récrivant la
fonction dont ont aimerait calculer la limite, de façon a y faire apparaître un quotient.
Exemple 9.57. (Une indétermination “0 · ∞”)

lim
x→0+

x log(x) = lim
x→0+

log(x)
1
x

BH
= lim

x→0+

1
x

− 1
x2

= − lim
x→0+

x = 0 .

⋄
Exemple 9.58. (Une indétermination “1∞”)

lim
x→+∞

( x

x+ 2

)x
.

Puisque x
x+2

> 0 pour tout x suffisamment grand et positif, on peut exponentier :( x

x+ 2

)x
= exp

(
x log

( x

x+ 2

))
NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net) 201

botafogo.saitis.net


9.11. La règle de Bernoulli-l’Hôpital

Comme l’exponentielle est continue, on pourra rentrer la limite (une fois qu’on aura vérifié que
la limite dans l’exposant existe) :

lim
x→+∞

( x

x+ 2

)x
= exp

(
lim

x→+∞
x log

( x

x+ 2

))
Étudions donc la limite à l’intérieur de l’exponentielle. En réarrangeant, on fait apparaître une
limite “0

0
” :

lim
x→+∞

x log
( x

x+ 2

)
= lim

x→+∞

log(x)− log(x+ 2)
1
x

BH
= lim

x→+∞

1
x
− 1

x+2

− 1
x2

= −2 lim
x→+∞

x2

x(x+ 2)
= −2 .

On a donc
lim

x→+∞

( x

x+ 2

)x
= exp(−2) .

⋄
Informel 9.59. Avant de se lancer corps et âme dans l’utilisation de la règle de BH, on a tout
intérêt de s’arrêter un moment et se demander si elle est vraiment nécessaire, et surtout si ses
hypothèses sont satisfaites...

Exemple 9.60. Considérons

lim
x→0

sin(x7) cos(sin(x8))

x7
.

Numérateur et dénominateur sont des fonctions dérivables , mais est-ce qu’on veut vraiment se
mettre à dériver le numérateur?

Or on voit que la composée cos(sin(x8)) a une limite qui vaut 1 (différente de zéro), donc elle
ne pose pas de problème, on peut simplement la séparer du reste, puis faire un changement de
variable z = x7, pour obtenir

lim
x→0

sin(x7) cos(sin(x8))

x7
=
(
lim
x→0

cos(sin(x8))
)

︸ ︷︷ ︸
=1

(
lim
x→0

sin(x7)

x7

)

= lim
z→0

sin(z)

z
= 1 .

⋄
Exemple 9.61. Considérons

lim
x→∞

x+ sin(x2)

3x

Cette limite est de la forme limx→+∞
f(x)
g(x)

et se calcule directement, en mettant en évidence le terme
dominant au numérateur,

lim
x→∞

x+ sin(x2)

3x
= lim

x→∞

x(1 + sin(x2)
x

)

3x
= lim

x→∞

(
1

3
+

sin(x2)

3x

)
=

1

3
.

Cette limite fournit un exemple de cas où numérateur et dénominateur sont tous les deux déri-
vables, mais le quotient f ′(x)

g′(x)
n’a pas de limite puisque

f ′(x)

g′(x)
=

1 + 2x cos(x2)

3
,

qui n’a pas de limite lorsque x→ ∞. Donc la règle de BH ne s’applique pas. ⋄
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9.11.1 Utilisation répétée de la règle

L’idée utilisée dans ce dernier exemple permet de revenir sur quelque chose que nous avons déjà
rencontré dans le chapitre sur les suites, à savoir la hiérarchie de comportements à l’infini des
polynômes, exponentielles et logarithmes.

On aura alors parfois besoin d’utiliser la règle de BH plus d’une fois :

Exemple 9.62.

lim
x→∞

x2

e3x
BH
= lim

x→∞

2x

3e3x
BH
=

2

3
lim
x→∞

1

3e3x
=

2

9
× 0 = 0 .

⋄

Généralisons :

Lemme 26. Pour toute base a > 1, tout α > 0 et tout m > 0,

lim
x→∞

xα

amx
= 0 , lim

x→∞

(loga(x))
α

xm
= 0 .

Preuve: Considérons la première limite. Deux remarques permettent de simplifier le calcul.

⋆ D’abord, on peut toujours écrire

amx = em
′x ,

où m′ = m log(a). Or puisque a > 1, on a m′ > 0. Donc il suffit de démontrer le résultat pour la base
e.

⋆ Puisque α ⩽ ⌊α⌋+ 1, il suffit aussi de démontrer le résultat pour des α entiers, c.-à-d. α = k ∈ N.

Fixons donc m > 0, et montrons que pour tout entier k ⩾ 1,

lim
x→∞

xk

emx
= 0 .

Dans le cas où k = 1,

lim
x→∞

x

emx
BH
= lim

x→∞

1

memx
= 0 .

Supposons alors que le résultat a été démontré pour un entier k. On a

lim
x→∞

xk+1

emx
BH
= lim

x→∞

(xk+1)′

(emx)′

=
k + 1

m
lim
x→∞

xk

emx

= 0 ,

et donc le résultat est vrai pour k + 1.

La deuxième limite est une conséquence de la première. En effet, ne posant y = loga(x),

lim
x→∞

(loga(x))
α

xm
= lim

y→∞

yα

amy
= 0 .
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9.12 Sur la recherche des extrema d’une fonction sur un inter-
valle [a, b]

Passons maintenant à l’utilisation de la dérivée dans la recherche des extrema globaux d’une
fonction.

On a vu (lien vers la section m_fonctions_continuite_sur_a_b) que lorsque f : [a, b] → R
est continue, elle atteint son minimum et son maximum :

Dans cette section, on décrit un algorithme qui permet (en principe) de trouver ces extrema par le
calcul.

Considérons, pour fixer les idées, la recherche du maximum global d’une fonction continue f :
[a, b] → R. Par simple observation, puisqu’on sait qu’il est atteint quelque part sur [a, b], on peut
facilement lister toutes les possibilités :

1) Il peut être atteint sur les bords, en x = a ou en x = b.

2) Il peut être atteint à l’intérieur de l’intervalle, c.-à-d. dans ]a, b[. Mais comme c’est un maxi-
mum global, il est aussi local. Donc si f est dérivable en ce point, sa dérivée s’y annule. Et
si elle n’est pas dérivable, on traite le cas séparément.

Cette simple distinction des cas nous mène directement à un algorithme pour la recherche du
minimum et du maximum de f :

1) On commencera par chercher les points stationnaires, c’est-à-dire les points x ∈]a, b[ où f
est dérivable et s’annule : f ′(x) = 0, ainsi que les points de ]a, b[ où f n’est pas dérivable.

2) On regardera les valeurs de la fonction sur le bord de l’intervalle, en x = a et x = b, et on les
comparera avec les valeurs en chacun des points trouvés à l’étape précédente.

3) Après avoir listé toutes ces valeurs, on garde la plus grande, et la plus petite.

Remarque 9.63. On a vu (dans Continuité sur un intervalle compact (lien vers la section m_
fonctions_continuite_sur_a_b)) que si f : [a, b] → R est continue, alors son ensemble
image est un intervalle fermé et borné, donné par

Im(f) =
[
min
x∈[a,b]

f(x) , max
x∈[a,b]

f(x)
]
,

et peut donc être trouvé à l’aide de l’algorithme décrit ci-dessus. ⋄
Exemple 9.64. Cherchons les extremas de la fonction f(x) = 3x4 + 4x3 − 12x2 sur [−1, 2].

204 NumChap: chap-calcul-differentiel, Dernière compilation: 2025-09-04 13:37:16+02:00. (Version Web:botafogo.saitis.net)

m_fonctions_continuite_sur_a_b
m_fonctions_continuite_sur_a_b
m_fonctions_continuite_sur_a_b
botafogo.saitis.net


9.12. Sur la recherche des extrema d’une fonction sur un intervalle [a, b]

1) Points stationnaires :

f ′(x) = 12(x3 + x2 − 2x) = 12x(x2 + x− 2)

= 12x(x+ 2)(x− 1) ,

donc la dérivée est nulle en −2 ̸∈ [−1, 2], en 0 ∈ [−1, 2] et en 1 ∈ [−1, 2]. On garde :

f(0) = 0 f(1) = −5

2) Sur les bords :
f(−1) = −13, f(2) = 32

En comparant les quatre valeurs encadrées ci-dessus, on voit que

⋆ f atteint son maximum global en x = 2 (sur le bord)

⋆ f atteint son minimum global en x = −1 (sur le bord)

En particulier,
Im(f) = [−13, 32] .

⋄
Exemple 9.65. Considérons f(x) = |x2(x − 2)| sur l’intervalle [1, 3]. Comme f : [1, 3] → R est
continue, elle atteint son minimum et son maximum. On commence par écrire

|x2(x− 2)| =

{
−x2(x− 2) si x ∈ [1, 2] ,

x2(x− 2) si x ∈]2, 3] .

1) Points stationnaires : Sur ]1, 2[, f ′(x) = x(4 − 3x), donc deux points où la dérivée s’annule,
en 0 ̸∈]1, 2[ et en 4

3
∈]1, 2[ :

f(4
3
) =

32

27

Sur ]2, 3[, f ′(x) = x(3x− 4), donc ne s’annule pas.

2) Points où f n’est pas dérivable? Seul candidat : x = 2. En effet,

lim
x→2−

f ′(x) = lim
x→2−

(x(4− 3x)) = −4

lim
x→2+

f ′(x) = lim
x→2+

(x(3x− 4)) = +4

Donc on garde
f(2) = 0
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3) Sur les bords :
f(1) = 1 f(3) = 9

On conclut que f

⋆ atteint son minimum en x = 2,

⋆ atteint son maximum en x = 3 (sur le bord).

Remarquons qu’en x = 4
3
, f possède un maximum, qui est local mais pas global.

On a aussi montré que
Im(f) = [0, 9]

⋄

9.13 Dérivée seconde et convexité/concavité

(ici, Video: v_derivee_convexes.mp4)

Rappelons qu’une fonction f est convexe si pour toute paire de points x1 < x2, et pour tout
λ ∈ [0, 1],

f((1− λ)x1 + λx2) ⩽ (1− λ)f(x1) + λf(x2) .

L’interprétation géométrique étant la suivante : si on choisit deux points quelconques sur le
graphe de f , le segment qui les relie est entièrement au-dessus du graphe.

Or on peut remarquer que lorsque f est dérivable, c’est-à-dire lorsque f ′(x) est défini pour tout x,
alors la convexité semble être équivalente à la croissance de x 7→ f ′(x) :

Sur l’animation ci-dessus, on a une fonction qui est manifestement convexe et dérivable, et on
observe que sa dérivée est croissante. Ceci implique que si la dérivée est dérivable, et si la dérivée
de la dérivée, c’est-à-dire la dérivée seconde, est positive, alors la fonction doit être convexe. Plus
précisément :
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Théorème 9.66. Soit I un intervalle ouvert, f : I → R deux fois dérivable sur I (f est dérivable, et f ′ est
aussi dérivable sur I).

1) Si f ′′(x) ⩾ 0 pour tout x ∈ I , alors f est convexe sur I .

2) Si f ′′(x) ⩽ 0 pour tout x ∈ I , alors f est concave sur I .

Preuve: Il suffit de démontrer la première implication. Remarquons d’abord que comme f ′′ ⩾ 0, f ′ est
croissante sur I . Soient x1 < x2 dans I . Fixons λ ∈]0, 1[ et posons z := (1− λ)x1 + λx2.

On applique deux fois le théorème des accroissements finis :

⋆ Sur [x1, z] : il existe c1 ∈]x1, z[ tel que

f ′(c1) =
f(z)− f(x1)

z − x1

⋆ Sur [z, x2] : il existe c2 ∈]z, x2[ tel que

f ′(c2) =
f(x2)− f(z)

x2 − z

Remarquons que comme c1 < c2, et puisque f ′ est croissante,

f ′(c1) ⩽ f ′(c2)

Donc

f(z)− f(x1) ⩽ f ′(c2)(z − x1) | · (1− λ)

f(x2)− f(z) = f ′(c2)(x2 − z) | · λ

En soustrayant les deux inégalités (multipliées par 1− λ et λ), on trouve

f(z)−
{
(1− λ)f(x1) + λf(x2)

}
⩽

f ′(c2)
(
(1− λ)(z − x1)− λ(x2 − z)︸ ︷︷ ︸

=0

)
= 0 .

On a donc montré que
f(z) ⩽ (1− λ)f(x1) + λf(x2) .

Exemple 9.67. Prenons f(x) = x2 sur R. Comme

f ′′(x) = 2 > 0 ∀x ∈ R ,

le théorème garantit que f est convexe. ⋄
Exemple 9.68. Prenons f(x) = ex sur R. Puisque

f ′′(x) = ex > 0 ∀x ∈ R ,

le théorème garantit que f est convexe.
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⋄
Exemple 9.69. Considérons maintenant f(x) = log(x), sur R∗

+. Comme

f ′′(x) = − 1

x2
< 0 ∀x ∈ R∗

+ ,

le théorème entraîne que f est concave :

⋄
Exemple 9.70. Considérons le polynôme f(x) = x4 − x2, et cherchons les intervalles sur lesquels
f est convexe/concave. Puisque f est deux fois dérivable, l’étude du signe de f ′′(x) = 2(6x2 − 1)
donne :

On en déduit par le théorème que :

⋆ f est convexe sur ]−∞,−
√
1/6[,

⋆ f est concave sur ]−
√

1/6,+
√

1/6[,

⋆ f est convexe sur ] +
√

1/6,+∞[.
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Les points P± = (±
√

1/6, f(±
√

1/6)) sont des points d’inflexion : ce sont des points du graphe où
la nature de la courbe change, passant de concave (resp. convexe) à convexe (resp. concave). ⋄
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